Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haider, Sajjad
Affiliations: George Mason University, System Architectures Laboratory, Fairfax, VA, USA. [email protected]
Note: [*] This research was sponsored in part by the Office of Naval Research under grant no. N00014-03-1-0033.
Abstract: Existing methods of parameter and structure learning of Bayesian Networks (BNs) from a database assume that the database is complete. If there are missing values, they are assumed to be missing at random. This paper incorporates the concepts used in Dempster-Shafer theory of belief functions to learn both the parameters and structure of BNs. Instead of filling the missing values by their estimates, as it is done in the conventional techniques, the proposed approach models the missing values as representing ignorance or lack of belief of a system modeler in the actual state of the corresponding variables. The proposed representation modifies the existing algorithms for parameter and structure learning of BNs. The representation also allows a system modeler to add new findings in terms of support functions as used in belief functions theory; thus, providing a richer way to enter evidence in BNs.
Keywords: Bayesian Networks, Bayesian Learning, Belief Functions, Dempster-Shafer Theory
DOI: 10.3233/HIS-2004-13-405
Journal: International Journal of Hybrid Intelligent Systems, vol. 1, no. 3-4, pp. 164-175, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]