Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ali, Yamina Mohamed Ben
Affiliations: Computer Sciences Department, Badji Mokhtar University BP 12 Annaba 23000, Algeria. E-mail: [email protected]
Abstract: In this paper, we present a bio-inspired learning methodology based on swarm particle optimization to learn both weights and topology of a multilayer feedforward neural network. The training algorithm represents a novel adaptive version of the particle swarm algorithm where the inertia weight is improved to increase the accuracy of the neural network. In addition to the updated exploration parameter, the proposed algorithm encloses a new acceleration parameter to deal with the convergence rate. In fact, the adopted optimization strategy aims to simulate a mutation rate with higher values in the favor of a global search. The swarm-based feedforward neural network was tested with benchmarking problems which includes both classification and regression problems. Some results are also presented to evaluate the algorithm performances.
Keywords: Particle swarm optimization, multilayer feedforward neural network, adaptive inertia weight, global acceleration parameter, classification problems, regression problems
DOI: 10.3233/HIS-2011-0139
Journal: International Journal of Hybrid Intelligent Systems, vol. 8, no. 4, pp. 185-198, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]