Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: HIS 2007
Guest editors: T. Ludermir, A. König and A.C.P.L.F. de Carvalho
Article type: Research Article
Authors: Prudêncio, Ricardo B.C. | Ludermir, Teresa B.
Affiliations: Centro de Informática, Universidade Federal de Pernambuco, Caixa Postal 7851 – CEP 50732-970, Recife (PE), Brazil
Abstract: Meta-Learning has been successfully applied to acquire knowledge used to support the selection of learning algorithms. Each training example in Meta-Learning (i.e. each meta-example) is related to a learning problem and stores the experience obtained in the empirical evaluation of a set of candidate algorithms when applied to the problem. The generation of a good set of meta-examples can be a costly process depending for instance on the number of available learning problems and the complexity of the candidate algorithms. In this work, we proposed the Active Meta-Learning, in which Active Learning techniques are used to reduce the set of meta-examples by selecting only the most relevant problems for meta-example generation. In an implemented prototype, we evaluated the use of two different Active Learning techniques applied in two different Meta-Learning tasks. The performed experiments revealed a significant gain in the Meta-Learning performance when the active techniques were used to support the meta-example generation.
DOI: 10.3233/HIS-2008-5202
Journal: International Journal of Hybrid Intelligent Systems, vol. 5, no. 2, pp. 59-70, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]