Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Proceedings from COMPSE 2016: Current Trends in Optimization Technology
Guest editors: Pandian Vasant and Utku Kose
Article type: Research Article
Authors: Nurika, Okta* | Hassan, Mohd Fadzil | Zakaria, Nordin | Jung, Low Tan
Affiliations: Department of Computer and Information Sciences, Universiti Teknologi Petronas, Perak, Malaysia
Correspondence: [*] Corresponding author: Okta Nurika, Department of Computer and Information Sciences, Universiti Teknologi Petronas, Perak, Malaysia. E-mail: [email protected].
Abstract: Study of fluctuation in genetic algorithm has been a sub-objective in genetic algorithm implementations. The reliability of genetic algorithm may vary based on implementation case, hence it is necessary to investigate its performance pattern for each implementation case. The purpose of this study is to observe the reliability of genetic algorithm in our previously simulated network optimization in a data centre. Our findings agree with the nature of genetic algorithm and other previous researchers, where it is found that the fluctuation of fitness values in our case happened randomly in general, but it had higher probability with small population sizes. However, regardless of fluctuations that in average occurred during early stage of population generation, the optimal solutions with near-maximum fitness values were able to be generated. This fact has proven the robustness of genetic algorithm itself. Alongside the fluctuation studies, this paper also presents the results of standard deviation and 95% confidence interval calculations towards the true mean of best solutions’ fitness values. The computed standard deviations reflect the consistency of the adjusted GA properties in finding the best optimal solutions when run repeatedly. Afterward, it is also concluded from the confidence intervals analysis that 95% of the time, the fitness values of the discovered solutions, which represent multiple network cards’ optimal configurations will be between near-maximum fitness value of 100 Mbps. Thus, our methodology to improve data centre’s network, through simultaneous multiple network cards optimization can be expected to be highly achieving.
Keywords: Fluctuation, confidence interval, drift, genetic algorithm, network card optimization
DOI: 10.3233/IDT-170320
Journal: Intelligent Decision Technologies, vol. 12, no. 1, pp. 25-37, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]