Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Lin
Affiliations: Jilin Province Economic Management Cadre College, Changchun, China | E-mail: [email protected]
Correspondence: [*] Corresponding author: Jilin Province Economic Management Cadre College, Changchun, China. E-mail: [email protected].
Abstract: The recognition of sports action is an important research subject, which is conducive to the improvement of athletes’ own level. To improve the accuracy of multi-modal data action recognition, based on the Transformer module, this study introduces a multi-head attention mechanism, fuses multi-modal data, and constructs a multi-stream structured object relationship inference network. Based on PointNet++ network and combining five different data fusion frameworks, a motion recognition model that integrates RGB data and 3D skeleton point cloud is constructed. The results showed that the Top-1 accuracy of multi-stream structured object relationship inference network was 42.5% and 42.7%, respectively, which was better than other algorithms. The accuracy of the multi-modal fusion model was improved by 15.6% and 5.1% compared with the single mode, and by 5.4% and 2.6% compared with the dual mode, which showed its superiority in the action recognition task. This showed that the fusion of multi-modal data can provide more abundant information, so as to improve the accuracy of action recognition. The accuracy of the action recognition model combining RGB data and 3D skeleton point cloud was 84.3%, 87.5%, 90.2%, 90.6% and 91.2% after the combination of different strategies, which effectively compensated for the problem of missing information in 3D skeleton point cloud and significantly improved the accuracy of action recognition. With a small amount of data, the Top-1 accuracy of the multi-stream structured object relationship inference network in this study was superior to other algorithms, showing its advantages in dealing with complex action recognition tasks. In addition, the action recognition model that fuses RGB data and 3D skeleton point cloud also achieved higher accuracy, which is better than other algorithms. This study can meet the needs of motion recognition in different scenarios and has certain reference value.
Keywords: Multi-modal data, action recognition, transformer, RGB data, 3D skeleton point cloud
DOI: 10.3233/IDT-230372
Journal: Intelligent Decision Technologies, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]