Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nayak, Subrat Kumar | Senapati, Biswa Ranjan | Mishra, Debahuti*
Affiliations: Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan (Deemed to be) University, Odisha, India
Correspondence: [*] Corresponding author: Debahuti Mishra, Department of Physics, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India. E-mail: [email protected].
Abstract: Meta-heuristic optimization algorithms are versatile and efficient techniques for solving complex optimization problems. When applied to clustering algorithms, these algorithms offer numerous advantages over traditional optimization methods, including global search capabilities, iterative refinement processes, robustness to initial conditions, and flexibility in handling diverse clustering objectives and constraints. Employing meta-heuristic optimization in clustering algorithms leads to improved accuracy, scalability, robustness, and flexibility in finding optimal or near-optimal clustering solutions. These algorithms generate new individuals iteratively using nature-inspired operations to obtain high-quality results. However, they often suffer from slower convergence and lack guarantees of finding the best solution for every problem, posing ongoing challenges in algorithm development. This study focuses on addressing the issue of premature convergence in metaheuristic algorithms by introducing an automatic cuckoo search (AuCS) algorithm. The AuCS algorithm aims to strike a balance between exploration and exploitation by dynamically updating the step size in each generation, thereby avoiding premature convergence. To evaluate the effectiveness of the proposed algorithm, experiments were conducted on 13 standard benchmark functions and 14 CEC 2005 benchmark functions. In overall performance, AuCS has the best optimum value in 72.22% of cases. This demonstrates the efficacy of the proposed algorithm in achieving improved clustering accuracy and minimizing intra-cluster distance. The proposed AuCS algorithm was applied to data clustering and compared with four swarm optimization algorithms. Here, AuCS outperforms these well-known algorithms in 5 out of 7 datasets. The experimental evaluations in both benchmark functions and clustering problems confirm the promising results of the proposed algorithm, suggesting that AuCS could be considered as a potential improvement over the cuckoo search algorithm.
Keywords: Clustering, cuckoo search algorithm, advanced cuckoo search algorithm, exploration, exploitation
DOI: 10.3233/IDT-idt230275
Journal: Intelligent Decision Technologies, vol. 18, no. 1, pp. 485-508, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]