Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Collection of Extended Selected Papers on Novel Research Results Presented in the IISA2021
Guest editors: George A. Tsihrintzis, Maria Virvou and Ioannis Hatzilygeroudis
Article type: Research Article
Authors: Okada, Keisuke | Kanamaru, Manami | Tan, Phan Xuan | Kamioka, Eiji*
Affiliations: Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo, Japan
Correspondence: [*] Corresponding author: Eiji Kamioka, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo, Japan. E-mail: [email protected].
Abstract: The new user cold-start problem is a grand challenge in content-based music recommender systems. This happens when the systems do not have sufficient information regarding the user’s preferences. Towards solving this problem, in this study, a rating prediction framework is proposed. The proposed framework allows the systems to predict the user’s rating scores for unrated musical pieces, by which good recommendations can be generated. The core idea here is to leverage the so-called MUSIC model, i.e., a five-factor musical preference model, which is characterized by Mellow, Unpretentious, Sophisticated, Intense, and Contemporary as the user’s musical preference profiles. When a user newly joins the systems, the first five-factor musical preference profile is established based on the user’s age and brain type information which is extracted from questionnaires. When the user experiences the systems for a certain period, his/her rating scores for experienced musical pieces are utilized for generating the second five-factor musical preference profile. The recommendations are then provided based on the rating scores predicted from a non-linear combination of these two five-factor musical preference profiles. The results demonstrated the effectiveness of the five-factor musical preference in alleviating the new user cold-start problem. In addition, the proposed method can potentially provide high-quality recommendations.
Keywords: Music recommender system, content-based recommendation, new user cold-start problem, five-factor MUSIC model
DOI: 10.3233/IDT-210196
Journal: Intelligent Decision Technologies, vol. 15, no. 4, pp. 749-760, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]