Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tchangani, Ayeley
Affiliations: LGP-ENIT, Université de Toulouse, Tarbes, France | E-mail: [email protected]
Correspondence: [*] Corresponding author: LGP-ENIT, Université de Toulouse, Tarbes, France. %****␣idt-13-idt190355_temp.tex␣Line␣25␣**** E-mail: [email protected].
Abstract: Nominal classification (NC) is a subfield of multi-criteria decision making where an object (in a broad sense) characterized by some attributes (with their valuation belonging to an ordered set, numeric in general) must be assigned to one of pre-defined classes or categories; these classes are characterized by some numerical valued features. This is also known as supervised classification as opposed to unsupervised classification in machine learning literature. In many applications such as that of risk analysis, characterization of classes by features may not be precisely defined; they will be rather fuzzily expressed using linguistic appreciation such as high is better, low is more appreciated, medium range is better, etc. leading to what is referred to as fuzzy nominal classification (FNC). On other hand bipolar reasoning is pervasive in classification in the sense that given a couple (feature, class), there will be some values of the feature that lead to automatically assigning (respect. automatically excluding to assign) the considered object into that class leading to what we name bipolar fuzzy nominal classification or BFNC for short; the main purpose of this paper is to develop this BFNC framework with risk analysis as an illustrative application domain. The stepping stones of this framework are two indexes for each couple (class, object) known as classifiability index (that measures the extent to which the considered object can be included into that class) and the rejectability index measuring the extent to which one should avoid including this object into that class. By using two indexes for classification, many classes can be qualified for inclusion of a given object rendering this framework flexible. Analyzing risks for large-scale complex systems requires identifying, assessing, and prioritizing different risk scenarios for their appropriate treatment such as resources allocation for risk mitigation, risk prevention, risk sharing, etc. To this end and given scarcity of resources in general, one must consider first prioritizing, filtering, or scoring risks that return to assigning them to pre-defined classes or categories; that is nominally classifying them. The developed BFNC framework applied to a real world application in the domain of countries’ risk classification shows its practical potentialities.
Keywords: Fuzzy nominal classification, supervised classification, bipolar analysis, risk analysis, risk scoring, synergetic aggregation
DOI: 10.3233/IDT-190355
Journal: Intelligent Decision Technologies, vol. 13, no. 1, pp. 117-130, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]