Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Qin, Kea; * | Oommen, B. Johnb
Affiliations: [a] School of Computer Science and Engineering, University of Electronic Sci & Tech of China, Chengdu, China | [b] School of Computer Science, Carleton University, Ottawa, Canada
Correspondence: [*] Corresponding author. E-mail: [email protected]
Note: [1] The second author was partially supported by NSERC, the Natural Sciences and Engineering Research Council of Canada. Some of the initial work of the first author was done while he was in Canada as a Visiting Scholar at Carleton University.
Abstract: Decision Theory and Pattern Recognition (PR) are inter-related. Indeed, if a practitioner is faced with a set of decisions and is required to make one based on the current “state of the world”, the problem is easily mapped into a PR problem where one maps the “state of the world” into the feature space, and the set of decisions onto the set of allowable classes. Of the various families of PR, Chaotic Pattern Recognition is a relatively new sub-field in which a system, which demonstrates chaotic behavior under normal conditions, resonates when it is presented with a pattern that it is trained with. The Adachi Neural Network (AdNN) is a classic neural structure which has been proven to demonstrate the phenomenon of Associative Memory (AM). In their pioneering paper Adachi and his co-authors showed that the AdNN also emanates periodic outputs on being exposed to trained patterns. This was later utilized by Calitoiu et al. to design systems which possibly possessed PR capabilities. In this paper, we show that the previously reported properties of the AdNN do not adequately describe the dynamics of the system. Rather, although it possesses far more powerful PR and AM properties than was earlier known, it goes through a spectrum of characteristics as one of its crucial parameters, α, changes. As α increases, the AdNN which is first an AM become quasi-chaotic (A formal explanation of this expression is given in the body of the paper.). The system is then distinguished by two phases which really do not have clear boundaries of demarcation. In the former of these phases it is quasi-chaotic for some patterns and periodic for others. In the latter of these, it exhibits properties that have been unknown – or rather, unreported – till now, namely, a PR capability which even recognizes masked or occluded patterns, in which the network resonates sympathetically for trained patterns while it is quasi-chaotic for untrained patterns. Finally, the system becomes completely periodic. The periodicity of the input patterns for trained and untrained inputs, and the understanding and demonstration of these properties, are to the best of our knowledge, novel.
Keywords: Chaotic Neural Networks (NNs), Chaotic Pattern Recognition, Adachi NN
DOI: 10.3233/IDT-2012-0120
Journal: Intelligent Decision Technologies, vol. 6, no. 1, pp. 27-41, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]