Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ryang, Heungmoa | Yun, Unila; * | Ryu, Keun Hob
Affiliations: [a] Department of Computer Engineering, Sejong University, Seoul, Korea | [b] Department of Computer Science, Chungbuk National University, Cheongju, Korea
Correspondence: [*] Corresponding author: Unil Yun, Department of Computer Engineering, Sejong University, Seoul, Korea. E-mail:[email protected]
Abstract: In frequent pattern mining, items are considered as having the same importance in a database and their occurrence are represented as binary values in transactions. In real-world databases, however, items not only have relative importance but also are represented as non-binary values in transactions. High utility pattern mining is one of the most essential issues in the pattern mining field, which recently emerged to address the limitation of frequent pattern mining. Meanwhile, tree construction with a single database scan is significant since a database scan is a time-consuming task. In utility mining, an additional database scan is necessary to identify actual high utility patterns from candidates. In this paper, we propose a novel tree structure, namely SIQ-Tree (Sum of Item Quantities), which captures database information through a single-pass. Moreover, a restructuring method is suggested with strategies for reducing overestimated utilities. The proposed algorithm can construct the SIQ-Tree with only a single scan and decrease the number of candidate patterns effectively with the reduced overestimation utilities, through which mining performance is improved. Experimental results show that our algorithm outperforms a state-of-the-art one in terms of runtime and the number of generated candidates with a similar memory usage.
Keywords: Data mining, high utility patterns, single-pass tree construction, tree restructuring, utility mining
DOI: 10.3233/IDA-160811
Journal: Intelligent Data Analysis, vol. 20, no. 2, pp. 395-415, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]