Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Business Analytics in Finance and Industry January 6-8, 2014, Santiago, Chile
Guest editors: Cristián Bravo, Matt Davison, Alejandro Jofré, Sebastián Maldonado and Richard Weber
Article type: Research Article
Authors: Chong, Mimia; * | Bravo, Cristiánb | Davison, Matta
Affiliations: [a] Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada | [b] Departamento de Ingeniería Industrial, Universidad de Talca, Curicó, Chile
Correspondence: [*] Corresponding author: Mimi Chong, Western Science Centre - Room 204, 1151 Richmond Street London, ON N6A 5B7, Canada. Tel.: +1 519 661 2111 ext 86828; Fax: +1 519 661 3813; E-mail:[email protected]
Abstract: Credit scoring is an automated, objective and consistent tool which helps lenders to provide quick loan decisions. It can replace some of the more mechanical work done by experienced loan officers whose decisions are intuitive but potentially subject to bias. Prospective borrowers may have a strong motivation to fraudulently falsify one or more of the attributes they report on their application form. Applicants learn about the characteristics that are used to build credit scoring models, and may alter the answers on their application form to improve their chance of loan approval. Few automated credit scoring models have considered falsified information from borrowers. We will show that sometimes it is profitable for financial institutions to spend money and effort to identify dishonest customers. We will also find the optimal effort that banks should spend on identifying these liars. Furthermore, we will show that it is possible for liars to eventually adjust their lies to escape from credit checks. The proposed issue will be studied using simulated data and discriminant analysis. This research can help lending financial institutions to reduce risk and maximize profit, and it also shows that it is feasible for customers to lie intelligently so as to evade credit checks and get loans.
Keywords: Credit scoring, discriminant analysis, default, fraud detection
DOI: 10.3233/IDA-150771
Journal: Intelligent Data Analysis, vol. 19, no. s1, pp. S87-S101, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]