Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Subtitle:
Article type: Research Article
Authors: Fanaee-T, Hadi* | Gama, João
Affiliations: Laboratory of Artificial Intelligence and Decision Support, University of Porto, Porto, Portugal
Correspondence: [*] Corresponding author: Hadi Fanaee-T, Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto INESC TEC, Rua Dr. Roberto Frias, Porto, Portugal. E-mail:[email protected]
Abstract: Syndromic surveillance systems continuously monitor multiple pre-diagnostic daily streams of indicators from different regions with the aim of early detection of disease outbreaks. The main objective of these systems is to detect outbreaks hours or days before the clinical and laboratory confirmation. The type of data that is being generated via these systems is usually multivariate and seasonal with spatial and temporal dimensions. The algorithm What's Strange About Recent Events (WSARE) is the state-of-the-art method for such problems. It exhaustively searches for contrast sets in the multivariate data and signals an alarm when find statistically significant rules. This bottom-up approach presents a much lower detection delay comparing the existing top-down approaches. However, WSARE is very sensitive to the small-scale changes and subsequently comes with a relatively high rate of false alarms. We propose a new approach called EigenEvent that is neither fully top-down nor bottom-up. In this method, we instead of top-down or bottom-up search, track changes in data correlation structure via eigenspace techniques. This new methodology enables us to detect both overall changes (via eigenvalue) and dimension-level changes (via eigenvectors). Experimental results on hundred sets of benchmark data reveals that EigenEvent presents a better overall performance comparing state-of-the-art, in particular in terms of the false alarm rate.
Keywords: Event detection, complex data streams, tensor decomposition, syndromic surveillance
DOI: 10.3233/IDA-150734
Journal: Intelligent Data Analysis, vol. 19, no. 3, pp. 597-616, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]