Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bay, Stephen D.; *
Affiliations: Department of Information and Computer Science, University of California, Irvine, CA 92697, USA
Correspondence: [*] E-mail: [email protected].
Abstract: Combining multiple classifiers is an effective technique for improving accuracy. There are many general combining algorithms, such as Bagging, Boosting, or Error Correcting Output Coding, that significantly improve classifiers like decision trees, rule learners, or neural networks. Unfortunately, these combining methods do not improve the nearest neighbor classifier. In this paper, we present MFS, a combining algorithm designed to improve the accuracy of the nearest neighbor (NN) classifier. MFS combines multiple NN classifiers each using only a random subset of features. The experimental results are encouraging: On 25 datasets from the UCI repository, MFS significantly outperformed several standard NN variants and was competitive with boosted decision trees. In additional experiments, we show that MFS is robust to irrelevant features, and is able to reduce both bias and variance components of error.
Keywords: Multiple models, Combining classifiers, Nearest neighbor, Feature selection, Voting
DOI: 10.3233/IDA-1999-3304
Journal: Intelligent Data Analysis, vol. 3, no. 3, pp. 191-209, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]