Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lin, Xinruia; b | Wang, Weic | Zhu, Xiaohuia | Yue, Yonga; *
Affiliations: [a] Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China | [b] The University of Edinburgh, Edinburgh, UK | [c] Hebei Normal University, Shijiazhuang, Hebei, China
Correspondence: [*] Corresponding author: Yong Yue, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China. E-mail: [email protected]. cn.
Abstract: In the digital era, the rapid advancement of artificial intelligence has put a spotlight on target detection, especially in traffic settings. This area of study is pivotal for crucial projects like autonomous vehicles, road monitoring, and traffic sign recognition. However, existing Chinese traffic datasets lack comprehensive benchmarks for traffic signs and signals, and foreign datasets do not match Chinese traffic conditions. Manually annotating a large-scale dataset tailored for Chinese traffic conditions presents a significant challenge. This study addresses this gap by proposing a cross-augmentation method for image datasets. We utilized YOLOX for target detection and trained models on the BDD100K dataset, achieving an impressive mAP of 60.25%, surpassing most algorithms. Leveraging transfer learning, we enhanced the CCTSDB dataset, creating the ACCTSDB dataset, which includes annotations for common traffic objects and Chinese traffic signs. Using YOLOX, we trained a traffic detector tailored for Chinese traffic scenarios, achieving an mAP of 75.79%. To further validate our approach, we conducted experiments on the TT100K dataset and successfully introduced the ATT100K dataset. Our methodology is poised to alleviate the limitations of manually annotating image datasets. The proposed ACCTSDB dataset and ATT100K dataset are expected to compensate for the lack of large-scale, multi-class traffic datasets in China.
Keywords: Data augmentation, computer vision
DOI: 10.3233/IDA-230075
Journal: Intelligent Data Analysis, vol. 28, no. 5, pp. 1151-1169, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]