Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Yuqiang | Chen, Wei* | Liao, Jing | Liu, Chun
Affiliations: School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, China
Correspondence: [*] Corresponding author: Wei Chen, School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, China. E-mail: [email protected].
Abstract: Recently, several studies have reported that Graph Convolutional Networks (GCN) exhibit defects in integrating node features and topological structures in graphs. Although the proposal of AMGCN compensates for the drawbacks of GCN to some extent, it still cannot solve GCN’s insufficient fusion abilities fundamentally. Thus it is essential to find a network component with stronger fusion abilities to substitute GCN. Meanwhile, a Deep Adaptive Graph Neural Network (DAGNN) proposed by Liu et al. can adaptively aggregate information from different hops of neighborhoods, which remarkably benefits its fusion abilities. To replace GCN with DAGNN network in AMGCN model and further strengthen the fusion abilities of DAGNN network itself, we make further improvements based on DAGNN model to obtain DAGNN variant. Moreover, experimentally the fusion abilities of the DAGNN variant are verified to be far stronger than GCN. And then build on that, we propose a Deep Adaptive Multi-channel Graph Neural Network (DAMGNN). The results of lots of comparative experiments on multiple benchmark datasets show that the DAMGNN model can extract relevant information from node features and topological structures to the maximum extent for fusion, thus significantly improving the accuracy of node classification.
Keywords: Graph neural networks, network representation learning, deep learning, mathematics of computing, graph algorithms
DOI: 10.3233/IDA-215958
Journal: Intelligent Data Analysis, vol. 26, no. 4, pp. 873-891, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]