Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mao, Yulina | Wang, Shuangxina; * | Yu, Dinglib | Zhao, Juchaoa
Affiliations: [a] Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Beijing, China | [b] Liverpool John Moores University, School of Engineering, Control Systems Center, UK
Correspondence: [*] Corresponding author: Shuangxin Wang, Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, No. 3, Shangyuancun, Beijing 100044, China. E-mail: [email protected].
Abstract: A safe operation protocol of the wind blades is a critical factor to ensure the stability of a wind turbine. Sensors are most commonly applied for defect detection on wind turbine blades (WTBs). However, due to the high cost and the sensitivity to stochastic noise, computer vision-guided automatic detection remains a challenge for surface defect detection on WTBs in particularly, its accuracy in locating defects is yet to be optimized. In this paper, we developed a visual inspection model that can automatically and precisely classify and locate the surface defects, through the utilization of a deep learning framework based on the Cascade R-CNN. In order to obtain high mean average precision (mAP) according to the characteristics of the dataset, a model named Contextual Aligned-Deformable Cascade R-CNN (CAD Cascade R-CNN) using improved strategies of transfer learning, Deformable Convolution and Deformable RoI Align, as well as context information fusion is proposed and a dataset with surface defects categorized and labeled as crack, breakage and oil pollution is generated. Moreover to alleviate the problem of false detection under a complex background, an improved bisecting k-means is presented during the test process. The adaptability and generalization of the proposed CAD Cascade R-CNN model were validated by each type of defects in dataset and different IoU thresholds, whereas, each of the above improved strategies was verified by gradual ablation experiments. Finally experiments that compared with the baseline Cascade R-CNN, Faster R-CNN and YOLO-v3 demonstrate its superiority over these existing approaches with a maximum of 92.1% mAP.
Keywords: Deep learning, Cascade R-CNN, surface defect detection wind turbine blades, accuracy
DOI: 10.3233/IDA-205143
Journal: Intelligent Data Analysis, vol. 25, no. 2, pp. 463-482, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]