Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mena, Franciscoa; * | Ñanculef, Ricardoa | Valle, Carlosb
Affiliations: [a] Department of Informatics, Federico Santa María University, RM, Chile | [b] Department of Computer Science and Informatics, Playa Ancha University, VA, Chile
Correspondence: [*] Corresponding author: Francisco Mena, Department of Informatics, Federico Santa María University, RM, Chile. E-mail: [email protected].
Abstract: The lack of annotated data is one of the major barriers facing machine learning applications today. Learning from crowds, i.e. collecting ground-truth data from multiple inexpensive annotators, has become a common method to cope with this issue. It has been recently shown that modeling the varying quality of the annotations obtained in this way, is fundamental to obtain satisfactory performance in tasks where inexpert annotators may represent the majority but not the most trusted group. Unfortunately, existing techniques represent annotation patterns for each annotator individually, making the models difficult to estimate in large-scale scenarios. In this paper, we present two models to address these problems. Both methods are based on the hypothesis that it is possible to learn collective annotation patterns by introducing confusion matrices that involve groups of data point annotations or annotators. The first approach clusters data points with a common annotation pattern, regardless the annotators from which the labels have been obtained. Implicitly, this method attributes annotation mistakes to the complexity of the data itself and not to the variable behavior of the annotators. The second approach explicitly maps annotators to latent groups that are collectively parametrized to learn a common annotation pattern. Our experimental results show that, compared with other methods for learning from crowds, both methods have advantages in scenarios with a large number of annotators and a small number of annotations per annotator.
Keywords: Learning from crowds, mixture model, multiple annotations, clustering
DOI: 10.3233/IDA-200009
Journal: Intelligent Data Analysis, vol. 24, no. S1, pp. 63-86, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]