Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gómez, Leticiaa | Kuijpers, Bartb | Vaisman, Alejandroa; *
Affiliations: [a] Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina | [b] Databases and Theoretical Computer Science Research Group, Data Science Institute, UHasselt – Hasselt University, Belgium
Correspondence: [*] Corresponding author: Alejandro Vaisman, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina. E-mail: [email protected].
Abstract: Online Analytical Processing (OLAP) comprises tools and algorithms that allow querying multidimensional databases. It is based on the multidimensional model, where data can be seen as a cube such that each cell contains one or more measures that can be aggregated along dimensions. In a “Big Data” scenario, traditional data warehousing and OLAP operations are clearly not sufficient to address current data analysis requirements, for example, social network analysis. Furthermore, OLAP operations and models can expand the possibilities of graph analysis beyond the traditional graph-based computation. Nevertheless, there is not much work on the problem of taking OLAP analysis to the graph data model. This paper proposes a formal multidimensional model for graph analysis, that considers the basic graph data, and also background information in the form of dimension hierarchies. The graphs in this model are node- and edge-labelled directed multi-hypergraphs, called graphoids, which can be defined at several different levels of granularity using the dimensions associated with them. Operations analogous to the ones used in typical OLAP over cubes are defined over graphoids. The paper presents a formal definition of the graphoid model for OLAP, proves that the typical OLAP operations on cubes can be expressed over the graphoid model, and shows that the classic data cube model is a particular case of the graphoid data model. Finally, a case study supports the claim that, for many kinds of OLAP-like analysis on graphs, the graphoid model works better than the typical relational OLAP alternative, and for the classic OLAP queries, it remains competitive.
Keywords: OLAP, data warehousing, graph database, big data, graph aggregation
DOI: 10.3233/IDA-194576
Journal: Intelligent Data Analysis, vol. 24, no. 3, pp. 515-541, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]