Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dash, M.; 1 | Liu, H.; 2
Affiliations: Department of Information Systems & Computer Science, National University of Singapore, Singapore 119260
Note: [1] E-mail: [email protected].
Note: [2] E-mail: [email protected].
Abstract: Feature selection has been the focus of interest for quite some time and much work has been done. With the creation of huge databases and the consequent requirements for good machine learning techniques, new problems arise and novel approaches to feature selection are in demand. This survey is a comprehensive overview of many existing methods from the 1970's to the present. It identifies four steps of a typical feature selection method, and categorizes the different existing methods in terms of generation procedures and evaluation functions, and reveals hitherto unattempted combinations of generation procedures and evaluation functions. Representative methods are chosen from each category for detailed explanation and discussion via example. Benchmark datasets with different characteristics are used for comparative study. The strengths and weaknesses of different methods are explained. Guidelines for applying feature selection methods are given based on data types and domain characteristics. This survey identifies the future research areas in feature selection, introduces newcomers to this field, and paves the way for practitioners who search for suitable methods for solving domain-specific real-world applications.
Keywords: Feature selection, Classification, Framework
DOI: 10.3233/IDA-1997-1302
Journal: Intelligent Data Analysis, vol. 1, no. 3, pp. 131-156, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]