Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dendamrongvit, Sareewan; * | Vateekul, Peerapon | Kubat, Miroslav
Affiliations: Department of Electrical & Computer Engineering, University of Miami, Coral Gables, FL, USA
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: An interesting issue in machine learning is induction in multi-label domains where each example can be labeled with two or more classes at the same time. In a work focusing on text categorization, we followed the most commonly used approach and induced a binary classifier for each class. Analyzing the results, we noticed that performance had been impaired by two factors. First, in text domains, each class is characterized by a different set of attributes; an appropriate attribute-selection technique thus has to be applied separately to each of them. Second, the individual classes often have to be induced from imbalanced training sets, a circumstance we addressed here by majority-class undersampling. The paper provides details of the induction system and reports the results of systematic experimentation.
Keywords: Induction, text categorization, multi-label examples, imbalanced classes
DOI: 10.3233/IDA-2011-0499
Journal: Intelligent Data Analysis, vol. 15, no. 6, pp. 843-859, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]