Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cao, Lijuana | Gu, Qingmingb
Affiliations: [a] Institute of High Performance Computing, 89C Science Park Drive #02-11/12 118261 Singapore. E-mail: [email protected] | [b] Office of Nanjing Committee of P.R. China, Beijing East Road 210008 China. E-mail: [email protected]
Abstract: This paper proposes a modified version of support vector machines (SVMs), called dynamic support vector machines (DSVMs), to model non-stationary time series. The DSVMs are obtained by incorporating the problem domain knowledge -- non-stationarity of time series into SVMs. Unlike the standard SVMs which use fixed values of the regularization constant and the tube size in all the training data points, the DSVMs use an exponentially increasing regularization constant and an exponentially decreasing tube size to deal with structural changes in the data. The dynamic regularization constant and tube size are based on the prior knowledge that in the non-stationary time series recent data points could provide more important information than distant data points. In the experiment, the DSVMs are evaluated using both simulated and real data sets. The simulation shows that the DSVMs generalize better than the standard SVMs in forecasting non-stationary time series. Another advantage of this modification is that the DSVMs use fewer support vectors, resulting in a sparser representation of the solution.
Keywords: non-stationary time series, support vector machines
DOI: 10.3233/IDA-2002-6105
Journal: Intelligent Data Analysis, vol. 6, no. 1, pp. 67-83, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]