Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Brijs, Tom; * | Vanhoof, Koen | Wets, Geert
Affiliations: Department of Applied Economics, Limburg University Centre, B-3590 Diepenbeek, Belgium. E-mail: [email protected], [email protected], [email protected]
Correspondence: [*] Corresponding author. Tel.: +32 11 268621; http://hyper.luc.ac.be
Abstract: The discovery of characteristic rules is a well-known data mining task and has lead to several successful applications. However, because of the descriptive nature of characteristic rules, typically a (very) large number of them is discovered during the mining stage. This makes monitoring and control of these rules, in practice, extremely costly and difficult. Therefore, a selection of the most promising subset of rules is desirable. Some heuristic rule selection methods have been proposed in the literature that deal with this issue. In this paper, we propose an integer programming model to solve the problem of optimally selecting the most promising subset of characteristic rules. Moreover, the proposed technique enables to control a user-defined level of overall quality of the model in combination with a maximum reduction of the redundancy extant in the original ruleset. We use real-world data to empirically evaluate the benefits and performance of the proposed technique against the well-known RuleCover heuristic. Results demonstrate that the proposed integer programming techniques are able to significantly reduce the number of retained rules and the level of redundancy in the final ruleset. Moreover, the results demonstrate that the overall quality in terms of the discriminant power of the final ruleset slightly increases if integer programming methods are used.
Keywords: redundancy reduction, rule selection, characteristic rules, artificial intelligence
DOI: 10.3233/IDA-2000-43-405
Journal: Intelligent Data Analysis, vol. 4, no. 3-4, pp. 229-240, 2000
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]