Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Yuyao | Obrecht, Christian* | Kuznik, Frédéric
Affiliations: CETHIL UMR5008, Université de Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
Correspondence: [*] Corresponding author: Christian Obrecht, CETHIL UMR5008, Université de Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, 69621 Villeurbanne, France. E-mail: [email protected].
Abstract: Short-term residential load forecasting plays a crucial role in smart grids, ensuring an optimal match between energy demands and generation. With the inherent volatility of residential load patterns, deep learning has gained attention due to its ability to capture complex nonlinear relationships within hidden layers. However, most existing studies have relied on default loss functions such as mean squared error (MSE) or mean absolute error (MAE) for neural networks. These loss functions, while effective in overall prediction accuracy, lack specialized focus on accurately predicting load peaks. This article presents a comparative analysis of soft-DTW loss function, a smoothed formulation of Dynamic Time Wrapping (DTW), compared to other commonly used loss functions, in order to assess its effectiveness in improving peak prediction accuracy. To evaluate peak performance, we introduce a novel evaluation methodology using confusion matrix and propose new errors for peak position and peak load, tailored specifically for assessing peak performance in short-term load forecasting. Our results demonstrate the superiority of soft-DTW in capturing and predicting load peaks, surpassing other commonly used loss functions. Furthermore, the combination of soft-DTW with other loss functions, such as soft-DTW + MSE, soft-DTW + MAE, and soft-DTW + TDI (Time Distortion Index), also enhances peak prediction. However, the differences between these combined soft-DTW loss functions are not substantial. These findings highlight the significance of utilizing specialized loss functions, like soft-DTW, to improve peak prediction accuracy in short-term load forecasting.
Keywords: Short-term load forecasting, loss function, dynamic time wrapping, soft-DTW, deep learning, peak prediction
DOI: 10.3233/ICA-230731
Journal: Integrated Computer-Aided Engineering, vol. 31, no. 3, pp. 327-340, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]