Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Akamatu, Saulo | de Lima, Denis Pereira | Pedrino, Emerson Carlos*
Affiliations: Department of Computer Science, Federal University of Sao Carlos, Rodovia Washington Luis, Brazil
Correspondence: [*] Corresponding author: Emerson Carlos Pedrino, Department of Computer Science, Federal University of Sao Carlos, Rodovia Washington Luis, Km 235, 13565-905, Brazil. E-mail: [email protected].
Abstract: Black Hole (BH) is a bioinspired metaheuristic algorithm based on the theory of relativity in which a sufficiently compact mass can deform the space-time to form a black hole, where no particles or electromagnetic radiation can escape from it. Thus, such an approach is based on the concept of a population of individuals (stars) representing solutions for a given computational problem to be optimized. In the literature, such an approach has been used to solve clustering problems, among others, since it is parameter-free and simple to implement. In this article, due to such characteristics, a hybrid solution, in software/hardware, of parallelization of the BH algorithm is proposed, aiming at accelerating its processing in hardware through a methodology that allows any user, even non-expert, implement hardware accelerators, for optimization problems, among others, through a high level tool. A System on Chip (SoC) platform was used for this implementation, containing a Zynq chip from Xilinx, which has two ARM cores and an FPGA. The BH Algorithm was implemented in software first and then in hardware for runtime comparison purposes to validate this approach. Also, in this paper, simpler and more popular optimization algorithms, such as Particle Swarm Optimization (PSO), Gravitational Search (GSA), and Big Bang – Big Crunch (BB-BC), along with simpler datasets, were used for comparison purposes, due to its ease of implementation and to keep a fairer comparison with BH as realized in other works in the literature. Therefore, the results obtained were satisfactory in terms of execution time and quality, with an average speedup of 25 times compared to the same implementation in software. In the future, it is intended to use this procedure to implement more recent clustering and optimization algorithms with larger datasets as well.
Keywords: Black hole algorithm, SoC, hybrid hardware, clustering
DOI: 10.3233/ICA-220678
Journal: Integrated Computer-Aided Engineering, vol. 29, no. 3, pp. 297-311, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]