Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Benamara, Nadir Kamela | Val-Calvo, Mikelb; d | Álvarez-Sánchez, Jose Ramónb | Díaz-Morcillo, Alejandroc | Ferrández-Vicente, Jose Manueld; * | Fernández-Jover, Eduardoe | Stambouli, Tarik Boudghenea
Affiliations: [a] Laboratoire Signaux et Images, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP1505, El M’naouer, Oran, Algeria | [b] Dpto. de Inteligencia Artificial, Universidad Nacional de Educación a Distancia, Madrid, Spain | [c] Dpto. Tecnologías de la Información y las Comunicaciones, University Politécnica de Cartagena, Cartagena, Spain | [d] Dpto. Electrónica, Tecnología de Computadoras y Proyectos, University Politécnica de Cartagena, Cartagena, Spain | [e] Instituto de Bioingeniería, University Miguel Hernández, Elche, Spain
Correspondence: [*] Corresponding author: Jose Manuel Ferrández-Vicente, Dpto. Tecnologías de la Información y las Comunicaciones, University Politécnica de Cartagena, Cartagena, Spain. E-mail: [email protected].
Abstract: Facial emotion recognition (FER) has been extensively researched over the past two decades due to its direct impact in the computer vision and affective robotics fields. However, the available datasets to train these models include often miss-labelled data due to the labellers bias that drives the model to learn incorrect features. In this paper, a facial emotion recognition system is proposed, addressing automatic face detection and facial expression recognition separately, the latter is performed by a set of only four deep convolutional neural network respect to an ensembling approach, while a label smoothing technique is applied to deal with the miss-labelled training data. The proposed system takes only 13.48 ms using a dedicated graphics processing unit (GPU) and 141.97 ms using a CPU to recognize facial emotions and reaches the current state-of-the-art performances regarding the challenging databases, FER2013, SFEW 2.0, and ExpW, giving recognition accuracies of 72.72%, 51.97%, and 71.82% respectively.
Keywords: Computer vision, emotion recognition, facial expression, human-machine interaction, label smoothing
DOI: 10.3233/ICA-200643
Journal: Integrated Computer-Aided Engineering, vol. 28, no. 1, pp. 97-111, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]