Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Yinan; * | McKelvey, Tomas
Affiliations: Chalmers University of Technology, Gothenburg, Sweden
Correspondence: [*] Corresponding author: Yinan Yu, Chalmers University of Technology, 412 96 Gothenburg, Sweden. E-mail: [email protected].
Abstract: Subspace models are widely used in many applications. By assuming an individual subspace model for each class, linear regression is applied and combined with minimum distance criteria for making the final decision. In a generalized subspace model, the full linear subspace of each class is split into subspaces with lower dimensions, and the unknown basis needs to be estimated with respect to the testing pattern using adaptively selected training samples. The training data selection is implemented using either least-squares regression or sparse approximation. In this paper, to further improve the classification performance, instead of attempting to minimize the regression error for each class, the between class separability is enhanced by a novel approach called Empirical Subspace Intersection (ESI) Removal technique. Evaluations are performed on (1) standard UCI data set, and (2) a computer aided system along with the proposed classification technique to determine the quality in wooden logs using microwave signals. The experimental results are shown and compared with classical methods.
Keywords: Classification, linear subspace, sparse representation, training data selection
DOI: 10.3233/ICA-140470
Journal: Integrated Computer-Aided Engineering, vol. 22, no. 1, pp. 59-69, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]