Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pera, Maria Soledad | Ng, Yiu-Kai; *
Affiliations: Computer Science Department, Brigham Young University, Provo, UT, USA
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: As the number of RSS news feeds continue to increase over the Internet, it becomes necessary to minimize the workload of the user who is otherwise required to scan through huge number of news articles to find related articles of interest, which is a tedious and often an impossible task. In order to solve this problem, we present a novel approach, called InFRSS, which consists of a correlation-based phrase matching (CPM) model and a fuzzy compatibility clustering (FCC) model. CPM can detect RSS news articles containing phrases that are the same as well as semantically alike, and dictate the degrees of similarity of any two articles. FCC identifies and clusters non-redundant, closely related RSS news articles based on their degrees of similarity and a fuzzy compatibility relation. Experimental results show that (i) our CPM model on matching bigrams and trigrams in RSS news articles outperforms other phrase/keyword-matching approaches and (ii) our FCC model generates high quality clusters and outperforms other well-known clustering techniques.
Keywords: Information Search, phrase matching, clustering, fuzzy-set IR model
DOI: 10.3233/ICA-2008-15405
Journal: Integrated Computer-Aided Engineering, vol. 15, no. 4, pp. 331-350, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]