Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sung, Wen-Tsai; | Hsiao, Ching-Li
Affiliations: Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan, e-mail: [email protected]
Note: [] Corresponding author.
Abstract: This investigate proposed a innovative Improved Hybrid PSO-GA (IHPG) algorithm which it combined the advantages of the PSO algorithm and GA algorithm. The IHPG algorithm uses the velocity and position update rules of the PSO algorithm and the GA algorithm in selection, crossover and mutation thought. This study explores the quality monitoring experiment by three existing neural network approaches to data fusion in wireless sensor module measurements. There are ten sensors deployed in a sensing area, the digital conversion and weight adjustment of the collected data need to be done. This experiment result can improve the accuracy of the estimated data and reduce the randomness of computing by adjustment optimization of smoothing parameter. According to the experimental analysis, the IHPG is better than the single PSO and GA in comparison the various neural network learning model.
Keywords: wireless sensor network, data fusion, improved hybrid PSO-GA, general regression neural network
Journal: Informatica, vol. 24, no. 2, pp. 291-313, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]