Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karbauskaitė, Rasa | Dzemyda, Gintautas
Affiliations: Institute of Mathematics and Informatics, Akademijos 4, 08663 Vilnius, Lithuania, e-mail: {karbauskaite, dzemyda}@ktl.mii.lt
Abstract: Most of real-life data are not often truly high-dimensional. The data points just lie on a low-dimensional manifold embedded in a high-dimensional space. Nonlinear manifold learning methods automatically discover the low-dimensional nonlinear manifold in a high-dimensional data space and then embed the data points into a low-dimensional embedding space, preserving the underlying structure in the data. In this paper, we have used the locally linear embedding method on purpose to unravel a manifold. In order to quantitatively estimate the topology preservation of a manifold after unfolding it in a low-dimensional space, some quantitative numerical measure must be used. There are lots of different measures of topology preservation. We have investigated three measures: Spearman's rho, Konig's measure (KM), and mean relative rank errors (MRRE). After investigating different manifolds, it turned out that only KM and MRRE gave proper results of manifold topology preservation in all the cases. The main reason is that Spearman's rho considers distances between all the pairs of points from the analysed data set, while KM and MRRE evaluate a limited number of neighbours of each point from the analysed data set.
Keywords: dimensionality reduction, manifold learning, multidimensional data visualization, locally linear embedding, topology preservation
Journal: Informatica, vol. 20, no. 2, pp. 235-254, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]