Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Malickas, Algimantas | Vitkus, Rimantas
Affiliations: Institute of Mathematics and Informatics, Akademijos 4, Vilnius, Lithuania. E-mail: [email protected] | Vilnius University, Čiurlionio 21, Vilnius, Lithuania
Abstract: Filtering of feature matches is heuristic method aimed to reduce the number of feasible matches and is widely employed in different image registration algorithms based on local features. In this paper we propose to interpret the filtering process as an optimal classification of the matches into the correct or incorrect match classes. The statistics, according to which the filtering is performed, uses differences of the geometrical invariants obtained from ordered sets of local features (composite features) of proper cardinality. Further, we examine some computationally efficient implementation schemes of the classification. Under the assumption of Gaussian measurement error, the conditional distribution densities of invariants can be approximated by well-known linearization approach. Experimental evidences obtained from fingerprint identification, which confirm viability of the proposed approach, are presented.
Keywords: image registration, composite features, geometric invariants
DOI: 10.3233/INF-2001-12303
Journal: Informatica, vol. 12, no. 3, pp. 385-412, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]