Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Simić, Nikola1 | Perić, Zoran H.1 | Savić, Milan S.2; *
Affiliations: [1] Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia. E-mails: [email protected], [email protected] | [2] Faculty of Natural Science and Mathematics, University of Pristina, Ive Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia. E-mail: [email protected]
Correspondence: [*] Corresponding author.
Abstract: Scalar quantizer selection for processing a signal with a unit variance is a difficult problem, while both selection and quantizer design for the range of variances is even tougher and to the authors’ best knowledge, it is not theoretically solved. Furthermore, performance estimation of various image processing algorithms is unjustifiably neglected and there are only a few analytical models that follow experimental analysis. In this paper, we analyse application of piecewise uniform quantizer with Golomb-Rice coding in modified block truncation coding algorithm for grayscale image compression, propose design improvements and provide a novel analytical model for performance analysis. Besides the nature of input signal, required compression rate and processing delay of the observed system have a strong influence on quantizer design. Consequently, the impact of quantizer range choice is analysed using a discrete designing variance and it was exploited to improve overall quantizer performance, whereas variable-length coding is applied in order to reduce quantizer’s fixed bit-rate. The analytical model for performance analysis is proposed by introducing Inverse Gaussian distribution and it is obtained by discussing a number of images, providing general closed-form solutions for peak-signal-to-noise ratio and the total average bit-rate estimation. The proposed quantizer design ensures better performance in comparison to the other similar methods for grayscale image compression, including linear prediction of pixel intensity and edge-based adaptation, whereas analytical model for performance analysis provides matching with the experimental results within the range of 1 dB for PSQNR and 0.2 bpp for the total average bit-rate.
Keywords: analytical model, Golomb–Rice coding, image compression, inverse Gaussian distribution, piecewise uniform quantizer, number of pixel change
Journal: Informatica, vol. 28, no. 4, pp. 703-724, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]