Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kavitha, S.; * | Kanchana, K. | Venkatesan, G.
Affiliations: Department of Electrical and Electronics Engineering, Saveetha Engineering College, Thandalam, Chennai – 602105, India | Department of Civil Engineering, Saveetha Engineering College, Thandalam, Chennai – 602105, India
Correspondence: [*] Corresponding Author. [email protected]
Abstract: Forest fires are a regular occurrence throughout the year with an increasing intensity in the summer and fall periods. Forest fires pose a significant threat to ecosystems, property and human lives. Early detection and rapid response are critical to mitigate the devastating effects of these fires. This article presents a Long Range (LoRa) Alert Network System designed for the early prediction and timely notification of forest fires. The system leverages LoRa technology to create a robust and cost-effective wireless communication network in remote forested areas. These fires primarily stem from various natural and environmental phenomena and natural disasters. The timely dissemination of forest fire alerts was hampered, resulting in delays in fire management. In order to address this issue, efforts were made to enhance the capability for prompt forest fire detection. The challenges predominantly revolve around forested regions where data communication infrastructure is deficient. In the event of a forest fire, there exists a network barrier that impedes information transmission. Consequently, forest fire detection systems leveraging Mesh LoRa networks and image processing networks have been devised. An integrated module within the LoRa/GPS HAT has been explored as a potential solution to the fire predicament. The Flame Sensor Module, functioning as a fire detection sensor component, and the LoRa/GPS HAT, serving as a hardware medium for radio frequency data transmission communication, have been employed. The interconnection of these devices within a network facilitates the development of a prototype fire detection system. Combining a Flame Sensor Module with a LoRa/GPS HAT is indeed a viable approach to creating a prototype fire detection and alert system. By combining the Flame Sensor Module with the LoRa/GPS HAT, a scalable and cost-effective fire detection and alert system appropriate for distant and wooded locations with limited traditional communication infrastructure is created. This system can play a crucial role in early fire detection, potentially reducing the severity of forest fires and protecting both natural resources and human lives.
Keywords: Early forest fire detection, LoRaWAN, sensor network, unmanned aerial vehicles, drone
DOI: 10.3233/AJW230080
Journal: Asian Journal of Water, Environment and Pollution, vol. 20, no. 6, pp. 61-66, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]