Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gill, Amandeep; * | Bali, Himani | Choudhary, Abhilasha
Affiliations: Department of EEE, Chandigarh University, Jaipur, India | Department of ECE, JECRC University, Jaipur, India
Correspondence: [*] Corresponding Author. [email protected]
Abstract: Unplanned placement of the distributed energy resources in the existing network can cause severe problems like voltage instability, increase in power losses, system islanding, reverse power flows, air pollution, etc. Power losses and voltage profile maintenance are the most significant restrictions of the existing power system. Therefore, optimal placement of distributed energy resources is required to overcome the above problems and the use of renewable distributed energy resources is required for the reduction of air pollution. For optimal placement, many researchers have proposed various techniques but many of them have neglected the iteration convergence rate for the solution. Optimal placement of distributed energy resources has to deal with constraints like size, location, number, power factor and type. Enhanced particle swarm optimisation and genetic algorithm technique for optimal penetration and sizing of renewable distributed energy resources in the IEEE 33 bus radial distribution network has been applied. Enhanced particle swarm optimisation and genetic algorithm techniques have been applied for power loss reduction, enhancing voltage profile and minimising the iteration for the convergence rate of the solution.
Keywords: Distributed energy resources, enhanced particle swarm optimisation technique, genetic algorithm, radial distribution network
DOI: 10.3233/AJW220096
Journal: Asian Journal of Water, Environment and Pollution, vol. 19, no. 6, pp. 119-125, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]