Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Environmental Data Mining
Guest editors: Karina Gibert
Article type: Research Article
Authors: Gibert, Karinaa; * | Sànchez–Marrè, Miquelb | Izquierdo, Joaquínc
Affiliations: [a] Knowledge Engineering and Machine Learning Group, Department of Statistics and Operation Research, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Catalonia, Spain | [b] Knowledge Engineering and Machine Learning Group, Computer Science Department, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Catalonia, Spain | [c] Fluing-IMM Universitat Politècnica de València, Valencia, Spain
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: One of the important issues related with all types of data analysis, either statistical data analysis, machine learning, data mining, data science or whatever form of data-driven modeling, is data quality. The more complex the reality to be analyzed is, the higher the risk of getting low quality data. Unfortunately real data often contain noise, uncertainty, errors, redundancies or even irrelevant information. Useless models will be obtained when built over incorrect or incomplete data. As a consequence, the quality of decisions made over these models, also depends on data quality. This is why pre-processing is one of the most critical steps of data analysis in any of its forms. However, pre-processing has not been properly systematized yet, and little research is focused on this. In this paper a survey on most popular pre-processing steps required in environmental data analysis is presented, together with a proposal to systematize it. Rather than providing technical details on specific pre-processing techniques, the paper focus on providing general ideas to a non-expert user, who, after reading them, can decide which one is the more suitable technique required to solve his/her problem.
Keywords: Pre-processing, data quality, data mining, knowledge discovery from databases, multidisciplinary approach, environmental systems
DOI: 10.3233/AIC-160710
Journal: AI Communications, vol. 29, no. 6, pp. 627-663, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]