Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Carbo, Javier; * | Molina, Jose M.
Affiliations: Group of Applied Artificial Intelligence, Computer Science Department, University Carlos III of Madrid, Av. Universidad Carlos III 22, Campus de Colmenarejo, Madrid 28270, Spain
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: In many dynamic open systems, agents have to interact with one another to achieve their goals. These interactions pose challenges in relation to the trust modeling of agents which aim to facilitate an agent’s decision making regarding the uncertainty of the behaviour of its peers. A lot of literature has focused on describing trust models, but less on evaluating and comparing them. The most extensive way to evaluate trust models is executing simulations with different conditions and a given combination of different types of agents (honest, altruist, etc.). Trust models are then compared according to efficiency, speed of convergence, adaptability to sudden changes, etc. Our opinion is that such evaluation measures do not represent a complete way to determine the best trust model, since they do not include testing which one is evolutionarily stable. Our contribution is the definition of a new way to compare trust models observing their ability to become dominant. It consists of finding out the right equilibrium of trust models in a multiagent system that is evolutionarily stable, and then observing which agent became dominant. We propose a sequence of simulations where evolution is implemented assuming that the worst agent in a simulation would replace its trust model with the best one in such simulation. Therefore the ability to become dominant couldbe an interesting feature for any trust model. Testing this ability through this evolutionary-inspired approach is then useful to compare and evaluate trust models in agent systems. Specifically we have applied our evaluation method to the Agent Reputation and Trust competitions held at 2006, 2007 and 2008 AAMAS conferences. We observe then that the resulting ranking of comparing the agents ability of becoming dominant is different from the official one where the winner was decided running a game with a representative of all participants several times. Since it is a new evaluation method that, as our application to the ART competition showed, gives additional information on the quality of trust models, it would improve the way they are compared. The application of our proposal is not restricted to the ART domain, we suggest that this kind of evolutionary approach has to be taken into account in any evaluation of trust models in agent systems.
Keywords: Trust models, autonomous agents, evolutionary game theory
DOI: 10.3233/AIC-140654
Journal: AI Communications, vol. 28, no. 3, pp. 429-440, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]