Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: STAIRS 2002
Article type: Research Article
Authors: Stokes, Nicola; | Carthy, Joe | Smeaton, Alan F.
Affiliations: Department of Computer Science, University College Dublin, Ireland E‐mail: {Nicola.Stokes,Joe.Carthy}@ucd.ie | School for Computer Applications and Centre for Digital Video Processing, Dublin City University, Ireland E‐mail: [email protected]
Note: [] Corresponding author.
Abstract: In this paper we compare the performance of three distinct approaches to lexical cohesion based text segmentation. Most work in this area has focused on the discovery of textual units that discuss subtopic structure within documents. In contrast our segmentation task requires the discovery of topical units of text i.e., distinct news stories from broadcast news programmes. Our approach to news story segmentation (the SeLeCT system) is based on an analysis of lexical cohesive strength between textual units using a linguistic technique called lexical chaining. We evaluate the relative performance of SeLeCT with respect to two other cohesion based segmenters: TextTiling and C99. Using a recently introduced evaluation metric WindowDiff, we contrast the segmentation accuracy of each system on both “spoken” (CNN news transcripts) and “written” (Reuters newswire) news story test sets extracted from the TDT1 corpus.
Keywords: Lexical cohesion, lexical chaining, text segmentation, NLP
Journal: AI Communications, vol. 17, no. 1, pp. 3-12, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]