Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Jinjina; * | Hua, Xianga | Zhao, Pengb | Kang, Kaib
Affiliations: [a] Xi’an Technological University, Xuefu Middle Road No.2, Xi’an, Shannxi, China | [b] Xi’an High-Tech Research Institution, Tongxin Road No.2, Xi’an, Shannxi, China
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Session-based recommendation aims at predicting the next behavior when the current interaction sequence is given. Recent advances evaluate the effectiveness of dual cross-domain information for the session-based recommendation. However, we discover that accurately modeling the session representations is still a challenging problem due to the complexity of preference interactions in the cross-domain, and various methods are proposed to only model the common features of cross-domain, while ignoring the specific features and enhanced features for the dual cross-domain. Without modeling the complete features, the existing methods suffer from poor recommendation accuracy. Therefore, we propose an end-to-end dual cross-domain with multi-channel interaction model (DCMI), which utilizes dual cross-domain session information and multiple preference interaction encoders, for session-based recommendation. In DCMI, we apply a graph neural network to generate the session global preference and local preference. Then, we design a cross-preference interaction module to capture the common, specific, and enhanced features for cross-domain sessions with local preferences and global preferences. Finally, we combine multiple preferences with a bilinear fusion mechanism to characterize and make recommendations. Experimental results on the Amazon dataset demonstrate the superiority of the DCMI model over the state-of-the-art methods.
Keywords: Session-based recommendation, dual cross-domain, cross-preference interaction module, bilinear fusion mechanism
DOI: 10.3233/AIC-230084
Journal: AI Communications, vol. 36, no. 4, pp. 341-359, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]