Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Distilled insights from IBERAMIA 2022
Guest editors: Ana Cristina Bicharra Garcia and Mariza Ferro
Article type: Research Article
Authors: Rojas-Perez, L. Oyuki | Martinez-Carranza, Jose; *
Affiliations: Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla, México
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: We present an approach to autonomous drone racing inspired by how a human pilot learns a race track. Human pilots drive around the track multiple times to familiarise themselves with the track and find key points that allow them to complete the track without the risk of collision. This paper proposes a three-stage approach: exploration, navigation, and refinement. Our approach does not require prior knowledge about the race track, such as the number of gates, their positions, and their orientations. Instead, we use a trained neural pilot called DeepPilot to return basic flight commands from camera images where a gate is visible to navigate an unknown race track and a Single Shot Detector to visually detect the gates during the exploration stage to identify points of interest. These points are then used in the navigation stage as waypoints in a flight controller to enable faster flight and navigate the entire race track. Finally, in the refinement stage, we use the methodology developed in stages 1 and 2, to generate novel data to re-train DeepPilot, which produces more realistic manoeuvres for when the drone has to cross a gate. In this sense, similar to the original work, rather than generating examples by flying in a full track, we use small tracks of three gates to discover effective waypoints to be followed by the waypoint controller. This produces novel training data for DeepPilot without human intervention. By training with this new data, DeepPilot significantly improves its performance by increasing its flight speed twice w.r.t. its original version. Also, for this stage 3, we required 66% less training data than in the original DeepPilot without compromising the effectiveness of DeepPilot to enable a drone to autonomously fly in a racetrack.
Keywords: Autonomous drone racing, deep learning, neural pilot
DOI: 10.3233/AIC-230065
Journal: AI Communications, vol. 37, no. 3, pp. 467-484, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]