Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Distilled insights from IBERAMIA 2022
Guest editors: Ana Cristina Bicharra Garcia and Mariza Ferro
Article type: Research Article
Authors: Oliveira, Pedroa; * | Salomé Duarte, M.b; c | Novais, Pauloa
Affiliations: [a] LASI/Algoritmi Centre, University of Minho, Braga, Portugal | [b] CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal | [c] LABBELS – Associate Laboratory, University of Minho, Braga, Portugal
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: The exponential growth of technology in recent decades has led to the emergence of some challenges inherent to this growth. One of these challenges is the enormous amount of data collected by the different sensors in our society, namely in management processes such as Wastewater Treatment Plants (WWTPs). These infrastructures comprise several processes to treat wastewater and discharge clean water in water courses. Therefore, the concentration of pollutants must be below the allowable emissions limits. In this work, anomaly detection models were conceived, tuned and evaluated to monitor essential parameters such as nitrate and ammonia concentrations and pH to improve WWTP management. Four Machine Learning models were considered, particularly Local Outlier Fraction, Isolation Forest, One-Class Support Vector Machines and Long Short-Term Memory-Autoencoders (LSTM-AE), to detect anomalies in the three parameters mentioned. Through the different experiments, it was possible to verify that, in terms of F1-Score, the best candidate model for the three analyzed parameters was LSTM-AE-based, with a value consistently higher than 97%.
Keywords: Anomaly detection, chemical parameters, deep learning, machine learning, wastewater management
DOI: 10.3233/AIC-230064
Journal: AI Communications, vol. 37, no. 3, pp. 443-465, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]