Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ren, Lingyu; * | Yang, Youlong | Sun, Liqin | Wu, Xu
Affiliations: School of Mathematics and Statistics, Xidian University, China. E-mails: [email protected], [email protected], [email protected], [email protected]
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Multiple instance learning is a modification in supervised learning that handles the classification of collection instances, which called bags. Each bag contains a number of instances whose features are extracted. In multiple instance learning, the standard assumption is that a positive bag contains at least one positive instance, whereas a negative bag is only comprised of negative instances. The complexity of multiple instance learning relies heavily on the number of instances in the training datasets. Since we are usually confronted with a large instance space, it is important to design efficient instance selection techniques to speed up the training process, without compromising the performance. Firstly, a multiple instance learning model of support vector machine based on grey relational analysis is proposed in this paper. The data size can be reduced, and the importance of instances in the bag can be preliminarily judged. Secondly, this paper introduces an algorithm with the bag-representative selector that trains the support vector machine based on bag-level information. Finally, this paper shows how to generalize the algorithm for binary multiple instance learning to multiple class tasks. The experimental study evaluates and compares the performance of our method against 8 state-of-the-art multiple instance methods over 10 datasets, and then demonstrates that the proposed approach is competitive with the state-of-art multiple instance learning methods.
Keywords: Multiple instance learning, support vector machine, grey relational analysis, bag representative, multi-class learning
DOI: 10.3233/AIC-200628
Journal: AI Communications, vol. 33, no. 2, pp. 59-73, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]