Potential Utility of Soluble p3-Alcadeinα Plasma Levels as a Biomarker for Sporadic Alzheimer's Disease
Abstract
Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins (α, β, γ) that share identical localization and function to the amyloid-β protein precursor (AβPP) in the brain. Alcs are proteolyzed in neurons through successive cleavages via secretases, resulting in non-aggregative p3-Alc, where p3 corresponds to the AβPP-fragment. We found p3-Alcα detected in human plasma reflected the pathological process of amyloid-β accumulation in Alzheimer's disease (AD) patients and therefore investigated the utility of p3-Alcα as a plasma biomarker in AD. We measured p3-Alcα plasma levels in 83 sporadic-AD, 18 mild cognitive impaired (MCI), and 24 control subjects using the sandwich-ELISA system. Pooled samples with previously published data (171 AD and 45 controls) were also analyzed. The plasma p3-Alcα concentrations in patients with AD and MCI were significantly higher compared with control subjects (224.7 ± 40.4, 223.3 ± 53.9, and 189.1 ± 32.9 pg/ml, respectively; p = 0.0012). In AD patients, the plasma p3-Alcα concentration significantly correlated with age (r = 0.23, p = 0.037) and serum creatinine levels (r = 0.23, p = 0.0012). Even after adjusting for confounding factors of age, gender, renal function, and ApoE-ε4, high plasma p3-Alcα levels were correlated with significant AD risk, with an odds ratio 1.47 (95% confidence interval: 1.18–1.93, p = 0.0019) for every 10 pg/ml increase. Pooled analysis further confirmed these findings. Increased plasma p3-Alcα, evident in the early stages of cognitive impairment, suggests that Alc metabolites are useful plasma biomarkers of AD.