Authors: Siogkas, Panagiotis K. | Stefanou, Kostas A. | Athanasiou, Lambros S. | Papafaklis, Michail I. | Michalis, Lampros K. | Fotiadis, Dimitrios I.
Article Type:
Research Article
Abstract:
BACKGROUND: Due to the incremental increase of clinical interest in the development of software that allows the 3-dimensional (3D) reconstruction and the functional assessment of the coronary vasculature, several software packages have been developed and are available today. OBJECTIVE: Taking this into consideration, we have developed an innovative suite of software modules that perform 3D reconstruction of coronary arterial segments using different coronary imaging modalities such as IntraVascular UltraSound (IVUS) and invasive coronary angiography images (ICA), Optical Coherence Tomography (OCT) and ICA images, or plain ICA images and can safely and accurately assess the hemodynamic status
…of the artery of interest. METHODS: The user can perform automated or manual segmentation of the IVUS or OCT images, visualize in 3D the reconstructed vessel and export it to formats, which are compatible with other Computer Aided Design (CAD) software systems. We employ finite elements to provide the capability to assess the hemodynamic functionality of the reconstructed vessels by calculating the virtual functional assessment index (vFAI), an index that corresponds and has been shown to correlate well to the actual fractional flow reserve (FFR) value. RESULTS: All the modules of the proposed system have been thoroughly validated. In brief, the 3D-QCA module, compared to a successful commercial software of the same genre, presented very good correlation using several validation metrics, with a Pearson’s correlation coefficient (R) for the calculated volumes, vFAI, length and minimum lumen diameter of 0.99, 0.99, 0.99 and 0.88, respectively. Moreover, the automatic lumen detection modules for IVUS and OCT presented very high accuracy compared to the annotations by medical experts with the Pearson’s correlation coefficient reaching the values of 0.94 and 0.99, respectively. CONCLUSIONS: In this study, we have presented a user-friendly software for the 3D reconstruction of coronary arterial segments and the accurate hemodynamic assessment of the severity of existing stenosis.
Show more
Keywords: Hemodynamics, virtual functional assessment index, stenosis
DOI: 10.3233/THC-170881
Citation: Technology and Health Care,
vol. 26, no. 1, pp. 187-193, 2018
Price: EUR 27.50