Journal on Satisfiability, Boolean Modeling and Computation - Volume 11, issue 1
Open Access
ISSN
1574-0617 (E)
The scope of JSAT is propositional reasoning, modeling, and computation. The Satisfiability discipline is a central focus of JSAT. We welcome all sorts of contributions to this theme but also encourage authors to submit papers on related topics as Computational Logic, Constraint Programming, Satisfiability Modulo Theories, Quantified Boolean Logic, Pseudo Boolean Methods, zero-one Programming, Integer Programming and Operations Research, whenever the link to Satisfiability is apparent.
Especially JSAT welcomes substantial extensions of conference papers, where the actual conference contribution must be cited. As such, authors are able to provide more detailed information about their work (theoretical details, proofs or theorems, algorithmic or implementation details, more exhaustive empirical evaluations) which were enforced to be omitted in the conference proceedings simply because of strict page limitations.
JSAT also welcomes detailed descriptions of new promising but challenging applications around SAT, to make the SAT community aware of those new applications, and to provide it the opportunity to tackle those challenges.
Occasionally JSAT also publishes Research Notes. Research Notes are also thoroughly reviewed but are not considered full Journal publications and hence will be designated and must be referenced to as such. Also, JSAT publishes papers on System Descriptions, being contributions with a focus on the internals of a Solver.
Abstract: Qute is a solver for Quantified Boolean Formulas (QBFs) based on Quantified Conflict-Driven Constraint Learning (QCDCL). Its main distinguishing feature is dependency learning, a lazy technique for relaxing restrictions on the order of variable assignments imposed by nested quantifiers. In this short note, we describe the configurations of Qute submitted to QBFEval’18, along with the parameter tuning process that went into creating them.