Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Ensastegui-Ortega, Maria Elena | Batyrshin, Ildar | Cárdenas–Perez, Mario Fernando | Kubysheva, Nailya | Gelbukh, Alexander
Article Type: Research Article
Abstract: In today’s data-rich era, there is a growing need for developing effective similarity and dissimilarity measures to compare vast datasets. It is desirable that these measures reflect the intrinsic structure of the domain of these measures. Recently, it was shown that the space of finite probability distributions has a symmetric structure generated by involutive negation mapping probability distributions into their “opposite” probability distributions and back, such that the correlation between opposite distributions equals –1. An important property of similarity and dissimilarity functions reflecting such symmetry of probability distribution space is the co-symmetry of these functions when the similarity between probability …distributions is equal to the similarity between their opposite distributions. This article delves into the analysis of five well-known dissimilarity functions, used for creating new co-symmetric dissimilarity functions. To conduct this study, a random dataset of one thousand probability distributions is employed. From these distributions, dissimilarity matrices are generated that are used to determine correlations similarity between different dissimilarity functions. The hierarchical clustering is applied to better understand the relationships between the studied dissimilarity functions. This methodology aims to identify and assess the dissimilarity functions that best match the characteristics of the studied probability distribution space, enhancing our understanding of data relationships and patterns. The study of these new measures offers a valuable perspective for analyzing and interpreting complex data, with the potential to make a significant impact in various fields and applications. Show more
Keywords: Dissimilarity function, co-symmetry, correlation, probability distribution, negation
DOI: 10.3233/JIFS-219363
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Wei, Tao | Yang, Changchun | Zheng, Yanqi | Zhang, Jingxue
Article Type: Research Article
Abstract: Recently, Graph Neural Networks (GNNs) using aggregating neighborhood collaborative information have shown effectiveness in recommendation. However, GNNs-based models suffer from over-smoothing and data sparsity problems. Due to its self-supervised nature, contrastive learning has gained considerable attention in the field of recommendation, aiming at alleviating highly sparse data. Graph contrastive learning models are widely used to learn the consistency of representations by constructing different graph augmentation views. Most current graph augmentation with random perturbation destroy the original graph structure information, which mislead embeddings learning. In this paper, an effective graph contrastive learning paradigm CollaGCL is proposed, which constructs graph augmentation by …using singular value decomposition to preserve crucial structure information. CollaGCL enables perturbed views to effectively capture global collaborative information, mitigating the negative impact of graph structural perturbations. To optimize the contrastive learning task, the extracted meta-knowledge was propagate throughout the original graph to learn reliable embedding representations. The self-information learning between views enhances the semantic information of nodes, thus alleviating the problem of over-smoothing. Experimental results on three real-world datasets demonstrate the significant improvement of CollaGCL over state-of-the-art methods. Show more
Keywords: Self-supervised learning, recommendation, contrastive learning, data augmentation
DOI: 10.3233/JIFS-236497
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Yang, Dianqing | Wang, Wenliang
Article Type: Research Article
Abstract: Unmanned aerial vehicle (UAV) remote-sensing images have a wide range of applications in wildfire monitoring, providing invaluable data for early detection and effective management. This paper proposes an improved few-shot target detection algorithm tailored specifically for wildfire detection. The quality of UAV remote-sensing images is significantly improved by utilizing image enhancement techniques such as Gamma change and Wiener filter, thereby enhancing the accuracy of the detection model. Additionally, ConvNeXt-ECA is used to focus on valid information within the images, which is an improvement of ConvNeXt with the addition of the ECANet attention mechanism. Furthermore, multi-scale feature fusion is performed by …adding a feature pyramid network (FPN) to optimize the extracted small target features. The experimental results demonstrate that the improved algorithm achieves a detection accuracy of 93.2%, surpassing Faster R-CNN by 6.6%. Moreover, the improved algorithm outperforms other target detection algorithms YOLOv8, RT-DETR, YoloX, and SSD by 3.4%, 6.4%, 7.6% and 21.1% respectively. This highlights its superior recognition accuracy and robustness in wildfire detection tasks. Show more
Keywords: Fire target detection, ConvNeXt-ECA, UAV remote-sensing image, feature pyramid network
DOI: 10.3233/JIFS-240531
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Singh, Pratibha | Kushwaha, Alok Kumar Singh | Varshney, Neeraj
Article Type: Research Article
Abstract: Precise video moment retrieval is crucial for enabling users to locate specific moments within a large video corpus. This paper presents Interactive Moment Localization with Multimodal Fusion (IMF-MF), a novel interactive moment localization with multimodal fusion model that leverages the power of self-attention to achieve state-of-the-art performance. IMF-MF effectively integrates query context and multimodal features, including visual and audio information, to accurately localize moments of interest. The model operates in two distinct phases: feature fusion and joint representation learning. The first phase dynamically calculates fusion weights for adapting the combination of multimodal video content, ensuring that the most relevant features …are prioritized. The second phase employs bi-directional attention to tightly couple video and query features into a unified joint representation for moment localization. This joint representation captures long-range dependencies and complex patterns, enabling the model to effectively distinguish between relevant and irrelevant video segments. The effectiveness of IMF-MF is demonstrated through comprehensive evaluations on three benchmark datasets: TVR for closed-world TV episodes and Charades for open-world user-generated videos, DiDeMo dataset, Open-world, diverse video moment retrieval dataset. The empirical results indicate that the proposed approach surpasses existing state-of-the-art methods in terms of retrieval accuracy, as evaluated by metrics like Recall (R1, R5, R10, and R100) and Intersection-of-Union (IoU). The results consistently demonstrate IMF-MF’s superior performance compared to existing state-of-the-art methods, highlighting the benefits of its innovative interactive moment localization approach and the use of self-attention for feature representation and attention modeling. Show more
Keywords: Multimedia data retrieval, query-dependent fusion, ranking system, multimodal retrieval, video segment localization
DOI: 10.3233/JIFS-233071
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Maheswari, M. | Anitha, D. | Sharma, Aditi | Kaur, Kiranpreet | Balamurugan, V. | Garikapati, Bindu | Dineshkumar, R. | Karunakaran, P.
Article Type: Research Article
Abstract: Anomaly detection, a critical aspect of data analysis and cybersecurity, aims to identify unusual patterns that deviate from the expected norm. In this study, we propose a hybrid approach that combines the strengths of Autoencoder neural networks and Multiclass Support Vector Machines (SVM) for robust anomaly detection. The Autoencoder is utilized for feature learning and extraction, capturing intricate patterns in the data, while the Multiclass SVM provides a discriminative classification mechanism to distinguish anomalies from normal patterns. Specifically, the Autoencoder is trained on normal data to acquire a compact and efficient representation of the underlying patterns, with the reconstruction errors …serving as indicative measures of anomalies. Concurrently, a Multiclass SVM is trained to classify instances into multiple classes, including an anomaly class. The anomaly scores from the Autoencoder and the decision function of the Multiclass SVM, along with that of the Random Forest Neural Network (AE-RFNN), are combined, leveraging their complementary strengths. A thresholding mechanism is then employed to classify instances as normal or anomalous based on the combined scores. The performance of the hybrid model is evaluated using standard metrics such as precision, recall, F1-score, and the area under the Receiver Operating Characteristic (ROC) curve. The proposed hybrid anomaly detection approach demonstrates effectiveness in capturing complex patterns and discerning anomalies across diverse datasets. Additionally, the model offers flexibility for adaptation to evolving data distributions. This study contributes to the advancement of anomaly detection methodologies by presenting a hybrid solution that combines feature learning and discriminative classification for improved accuracy and generalization. Show more
Keywords: Anomaly detection, Autoencoder, Multiclass SVM, feature learning, hybrid model, cybersecurity
DOI: 10.3233/JIFS-240028
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Shehzadi, Maham | Fahmi, Aliya | Abdeljawad, Thabet | Khan, Aziz
Article Type: Research Article
Abstract: This paper investigates the detailed analysis of linear diophantine fuzzy Aczel-Alsina aggregation operators, enhancing their efficacy and computational efficiency while aggregating fuzzy data by using the fuzzy C-means (FCM) method. The primary goal is to look at the practical uses and theoretical foundations of these operators in the context of fuzzy systems. The aggregation process is optimised using the FCM algorithm, which divides data into clusters iteratively. This reduces computer complexity and enables more dependable aggregation. The mathematical underpinnings of Linear Diophantine Fuzzy Aczel-Alsina aggregation operators are thoroughly examined in this study, along with an explanation of their purpose in …handling imprecise and uncertain data. It also investigates the integration of the FCM method, assessing its impact on simplifying the aggregation procedure, reducing algorithmic complexity, and improving the accuracy of aggregating fuzzy data sets. This work illuminates these operators performance and future directions through extensive computational experiments and empirical analysis. It provides an extensive framework that shows the recommended strategy’s effectiveness and use in a variety of real-world scenarios. We obtain our ultimate outcomes through experimental investigation, which we use to inform future work and research. The purpose of the study is to offer academics and practitioners insights on how to improve information fusion techniques and decision-making processes. Show more
Keywords: Linear diophantine fuzzy set, Aczel-Alsina operational laws, linear diophantine fuzzy Aczel-Alsina aggregation operators, fuzzy C-means algorithm
DOI: 10.3233/JIFS-238716
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2024
Authors: Selvaraj, Sunil Kumar | Bhat Pundikai, Venkatramana
Article Type: Research Article
Abstract: BACKGROUND: The increased depletion of ground water resources poses the risk of higher moisture stress environment for agriculture crops. The rapid increase in the moisture stress situation imposes the need of efficient agricultural research on determining the impact of moisture stress on variety of crops. OBJECTIVE: The prime objective of the proposed work is building an IoT based Plant Phenotyping Device for moisture stress experimental study on variety of crops with deep learning model for stress response detection. METHODS: In this work, IoT technology is used for building a proposed system for conducting …the moisture stress experiments on plants and adopting the image processing and convolution neural network based model for stress prediction. RESULTS: The accuracy of the proposed system was experimentally evaluated and empirical results were satisfactory in maintaining the desired level of moisture stress. Performance analysis of LeNet, AlexNet, customized AlexNet and GoogLeNet CNN models were carried out with hyper-parameters variations on the leaf images. GoogLeNet achieved a better validation accuracy of 96% among other models. The trained GoogLeNet model is used for predicting the moisture stress response and predicted results were matched with manual observation of stress response. SIGNIFICANCE: The affirmative results of proposed system would increases its adoption for in-house precision agriculture and also for conducting various moisture stress experiments on variety of crops. The confirmative detection of moisture stress tolerance level of plant provides knowledge on minimum level of water requirement for plant growth, which in-turn save the water by avoiding excess watering to plants. Show more
Keywords: IoT, sensors, Raspberry Pi, moisture stress, deep learning
DOI: 10.3233/JIFS-236885
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Ashwin, P.V. | Ansal, K.A.
Article Type: Research Article
Abstract: Image classification using polarimetric synthetic aperture radar (Pol-SAR) is becoming more important in image processing for remote sensing applications. However, in the existing techniques, during the feature extraction process, there exist some limitations including laborious endeavour for Pol-SAR image classification, identifying intrinsic features for target recognition is difficult in feature selection, and pixel-level Pol-SAR image classification is difficult for obtaining more precise and coherent interpretation consequences. Hence to overcome these issues, a novel Multifarious Stratification Stratagem in machine learning is proposed to achieve pixel-level Pol-SAR classification. In this proposed model, a novel Scrumptious Integrant Wrenching method is used for efficient …feature extraction. It is compatible with the orientation-sensitive of the Pol-SAR image which increases the variety of intra-layer features. To remove the difficulty in feature selection, a novel Episodicical Proximity Selection method is proposed in which a Split-level parallel feature selection strategy is used to select the best qualities from the extracted features. To tackle the difficulty in classification, an Elastic Net Classifier (ENC) is used that find the coefficient vector for the linear combination of the training sets. This efficiently classified the best features in the Pol-SAR images and improved the proposed system’s accuracy. As a result, the performance measures of the proposed system demonstrate that the accuracy is increased by 99.69%, precision is increased by 98.99%, recall is increased by 98.99%, sensitivity is increased by 98.99%, and F1-score is increased by 98.99% as a response. Show more
Keywords: Feature extraction, feature selection, elastic net classifier, principle component analysis, convolution layer, max-pooling layer
DOI: 10.3233/JIFS-222403
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2024
Authors: Ning, Tao | Zhang, Tingting | Huang, Guowei
Article Type: Research Article
Abstract: Folk dance is an important intangible cultural heritage in China. In the environment where movement recognition technology is widely used, there is still no research field on the protection and inheritance of folk dance culture. In order to better protect and inherit the minority dance, screening the typical movements of 5 types of minority dance, through the dance video frame processing, obtain the key movements of 19 class dance sequence, build the national dance typical action data set, put forward a 3D CNN fusion Transformer national dance recognition network model (FCTNet), the recognition rate of 96.7% in the experiment. The …results show that the construction method of the folk dance data set is reasonable, the identification model has good performance for the classification of folk dance, and can effectively identify and record the folk dance movements, which also makes new contributions to the digital protection of folk dance. Show more
Keywords: Transformer, folk dance, cultural protection
DOI: 10.3233/JIFS-235302
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-09, 2024
Authors: Shao, Shuai | Li, Dongwei
Article Type: Research Article
Abstract: As technology evolves, the allocation and use of educational resources becomes increasingly complex. Due to the many factors involved in recommending and matching English education resources, traditional predictive control models are no longer adequate. Therefore, fuzzy predictive control models based on neural networks have emerged. To increase the effectiveness and efficiency of using English educational resources (EER), this research aims to create a neural network-based fuzzy predictive control model (T-S-BPNN) for resource suggestion and matching. The results of the study show that the T-S-BPNN model α proposed in the study starts from 0 and increases sequentially by 0.1 up to …1, observing the change in MAE values. The experiment’s findings demonstrate that the value of MAE is lowest at values around 0.5. The T-S-BPNN model, on the other hand, gradually plateaued in its adaptation rate up to 7 runs, reaching about 9.8%. The accuracy rate peaked at 0.843 when the number of recommendations reached 7. The recall rate also peaked at 0.647 when the number of recommended English courses reached 7. The R-value for each set hovered around 0.97, which is a good fit. And the R-value of the training set is 0.97024, which can indicate that the T-S-BPNN model model proposed in the study fits well. It indicates that the algorithm proposed in the study is highly practical. Show more
Keywords: Resource recommendation, english teaching, fuzzy predictive control, recommended evaluation, neural network
DOI: 10.3233/JIFS-233265
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]