Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2023: 2
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Wang, Tianhui | Liu, Renjing | Liu, Jiaohui | Qi, Guohua
Article Type: Research Article
Abstract: With the development of artificial intelligence technology, the assessment method based on machine learning, especially the ensemble learning method, has attracted more and more attention in the field of credit assessment. However, most of the ensemble assessment models are complex in structure and costly in time for parameter tuning, few of them break through the limitations of lightweight, universal and efficient. This paper present a new ensemble model for personal credit assessment. First, considering the conflicts and differences among multiple sources of information, a new method is proposed to correct the category prior information by using the difference measure. Then, …the revised prior information is fused with the current sample information with the help of Bayesian data fusion theory. The model can integrate the advantages of multiple benchmark classifiers to reduce the interference of uncertain information. To verify the effectiveness of the proposed model, several typical ensemble classification models are selected and empirically studied using real customer credit data from a commercial bank in China, and the results show that among various assessment criteria: the proposed model not only effectively improves the multi-class classification performance, but also outperforms other advanced multi-class classification credit assessment models in terms of parameter tuning and generalizability. This paper supports commercial banks and other financial institutions examination and approval work. Show more
Keywords: Ensemble model, multi-class credit assessment, information fusion theory
DOI: 10.3233/JIFS-233141
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Vallabhaneni, Nagalakshmi | Prabhavathy, Panneer
Article Type: Research Article
Abstract: Numerous people are interested in learning yoga due to the increased tension levels in the modern lifestyle, and there are a variety of techniques or resources available. Yoga is practiced in yoga centers, by personal instructors, and through books, the Internet, recorded videos, etc. As the aforementioned resources may not always be available, a large number of people will opt for self-study in fast-paced lifestyles. Self-learning makes it impossible to recognize an incorrect posture. Incorrect poses will have a negative effect on the patient’s health, causing severe agony and long-term chronic issues. Computer vision (CV)-related techniques derive pose features and …conduct pose analysis using non-invasive CV methods. The application of machine learning (ML) and artificial intelligence (AI) techniques to an inter-disciplinary field like yoga becomes quite difficult. Due to its potent feature learning ability, deep learning (DL) has recently achieved an impressive level of performance in classifying yoga poses. In this paper, an artificial algae optimizer with hybrid deep learning-based yoga pose estimation (AAOHDL-YPE) model is presented. The presented AAOHDL-YPE model analyzes yoga video clips to estimate pose. Utilizing Part Confidence Map and Part Affinity Field with bipartite equivalent and parsing, OpenPose can be employed to determine the joint location. The deep belief network (DBN) model is then used for Yoga recognition. Finally, the AAO algorithm is utilized to enhance the EfficientNet model’s recognition performance. The results of a comprehensive experimentation analysis reveal that the AAOHDL-YPE technique produces superior results in comparison to existing methods. Show more
Keywords: Yoga posture, activity recognition, deep learning, metaheuristics, computer vision
DOI: 10.3233/JIFS-233583
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Vidya, S. | Jagannathan, Veeraraghavan | Guhan, T. | Kumar, Jogendra
Article Type: Research Article
Abstract: Rainfall forecasting is essential because heavy and irregular rainfall creates many impacts like destruction of crops and farms. Here, the occurrence of rainfall is highly related to atmospheric parameters. Thus, a better forecasting model is essential for an early warning that can minimize risks and manage the agricultural farms in a better way. In this manuscript, Deep Neural Network (DNN) optimized with Flamingo Search Optimization Algorithm (FSOA) is proposed for Long-term and Short-term Rainfall forecasting. Here, the rainfall data is obtained from the standard dataset as Sudheerachary India Rainfall Analysis (IRA). Moreover, the Morphological filtering and Extended Empirical wavelet transformation …(MFEEWT) approach is utilized for pre-processing process. Also, the deep neural network is utilized for performing rainfall prediction and classification. Additionally, the parameters of the DNN model is optimizing by Flamingo Search Optimization Algorithm. Finally, the proposed MFEEWT-DNN- FSOA approach has effectively predict the rainfall in different locations around India. The proposed model is implemented in Python tool and the performance metrics are calculated. The proposed MFEEWT-DNN- FSOA approach has achieved 25%, 26%, 25.5% high accuracy and 35.8%, 24.7%, 15.9% lower error rate for forecasting rainfall in Cannur at Kerala than the existing Map-Reduce based Exponential Smoothing Technology for rainfall prediction (MR-EST-RP), modular artificial neural networks with support vector regression for rainfall prediction (MANN-SVR-RP), and biogeography-based extreme learning machine (BBO-ELM) (BBO-ELM-RP) methods respectively. Show more
Keywords: Deep neural network, extended empirical wavelet transformation, flamingo search optimization, morphological filtering, long-term and short-term rainfall
DOI: 10.3233/JIFS-235798
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Cui, Wei | Zhang, Xuerui | Shang, Mingsheng
Article Type: Research Article
Abstract: An increasing number of fake news combining text, images and other forms of multimedia are spreading rapidly across social platforms, leading to misinformation and negative impacts. Therefore, the automatic identification of multimodal fake news has become an important research hotspot in academia and industry. The key to multimedia fake news detection is to accurately extract features of both text and visual information, as well as to mine the correlation between them. However, most of the existing methods merely fuse the features of different modal information without fully extracting intra- and inter-modal connections and complementary information. In this work, we learn …physical tampered cues for images in the frequency domain to supplement information in the image space domain, and propose a novel multimodal frequency-aware cross-attention network (MFCAN) that fuses the representations of text and image by jointly modelling intra- and inter-modal relationships between text and visual information whin a unified deep framework. In addition, we devise a new cross-modal fusion block based on the cross-attention mechanism that can leverage inter-modal relationships as well as intra-modal relationships to complement and enhance the features matching of text and image for fake news detection. We evaluated our approach on two publicly available datasets and the experimental results show that our proposed model outperforms existing baseline methods. Show more
Keywords: Fake news detection, multimoal, cross attention, frequency domain
DOI: 10.3233/JIFS-233193
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-23, 2023
Authors: Jasmine, J. Aruna | Genitha, C. Heltin
Article Type: Research Article
Abstract: Predicting the landslide-prone area is critical for various applications, including emergency response, land planning, and disaster mitigation. There needs to be a thorough landslide inventory in current studies and appropriate sampling uncertainty issues. Landslide risk mapping has expanded significantly as machine learning techniques have developed. However, one of the primary issues in Landslide Prediction is data imbalance (DI). This is problematic since it is challenging or expensive to generate an accurate inventory map of landslides based on previous data. This study proposes a novel landslide prediction method using Generative Adversarial Networks (GAN) for generating the synthetic data, Synthetic Minority Oversampling …Technique (SMOTE) for overcoming the data imbalance problem, and Bee Collecting Pollen Algorithm (BCPA) for feature extraction. Combining 184 landslides and ten criteria, including topographic wetness index (TWI), aspect, distance from the road, total curvature, sediment transport index (STI), height, slope, stream, lithology, and slope length, a geographical database was produced. The data was generated using GAN, a Deep Convolutional Neural Network (DCNN) technique to populate the dataset. The proposed DCNN-BCPA approach findings were merged with current machine learning methods such as Random Forests (RF), Artificial Neural Networks (ANN), k-Nearest Neighbours (k-NN), Decision Trees (DT), Support Vector Machine (SVM), logistic regression (LR). The model’s accuracy, precision, recall, f-score, and RMSE were measured using the following metrics: 92.675%, 96.298%, 90.536%, 96.637%, and 45.623%. This study suggests that harmonizing landslide data may have a substantial impact on the predictive capabilities of machine learning models. Show more
Keywords: Bee collecting pollen algorithm, data balancing, generative adversarial network, landslide susceptibility, synthetic data
DOI: 10.3233/JIFS-234924
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-21, 2023
Authors: Li, Weidong | Li, Zhenying | Wang, Chisheng | Zhang, Xuehai | Duan, Jinlong
Article Type: Research Article
Abstract: Accurate identification and monitoring of aircraft on the airport surface can assist managers in rational scheduling and reduce the probability of aircraft conflicts, an important application value for constructing a "smart airport." For the airport surface video monitoring, there are small aircraft targets, aircraft obscuring each other, and affected by different weather, the aircraft target clarity is low, and other complex monitoring problems. In this paper, a lightweight model network for video aircraft recognition in airport field video in complex environments is proposed based on SSD network incorporating coordinate attention mechanism. First, the model designs a lightweight feature extraction network …with five feature extraction layers. Each feature extraction layer consists of two modules, Block_A and Block_I. The Block_A module incorporates the coordinate attention mechanism and the channel attention mechanism to improve the detection of obscured aircraft and to enhance the detection of small targets. The Block_I module uses multi-scale feature fusion to extract feature information with rich semantic meaning to enhance the feature extraction capability of the network in complex environments. Then, the designed feature extraction network is applied to the improved SSD detection algorithm, which enhances the recognition accuracy of airport field aircraft in complex environments. It was tested and subjected to ablation experiments under different complex weather conditions. The results show that compared with the Faster R-CNN, SSD, and YOLOv3 models, the detection accuracy of the improved model has been increased by 3.2% , 14.3% , and 10.9% , respectively, and the model parameters have been reduced by 83.9% , 73.1% , and 78.2% respectively. Compared with the YOLOv5 model, the model parameters are reduced by 38.9% when the detection accuracy is close, and the detection speed is increased by 24.4% , reaching 38.2fps, which can well meet the demand for real-time detection of aircraft on airport surfaces. Show more
Keywords: complex environment, airport surface, aircraft recognition, SSD network, coordinate attention
DOI: 10.3233/JIFS-231423
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Sendhil, R. | Arulmurugan, A. | Jose Moses, G. | Kaviarasan, R. | Ramadoss, P.
Article Type: Research Article
Abstract: Occult peritoneal metastasis often emerges in sick persons having matured gastric cancer (GC) and is inexpertly detected with presently feasible instruments. Due to the existence of peritoneal metastasis that prevents the probability of healing crucial operation, there relies upon a discontented requirement for an initial diagnosis to accurately recognize sick persons having occult peritoneal metastasis. The proffered paradigm of this chapter identifies the initial phases of occult peritoneal metastasis in GC. The initial phase accompanies metabolomics for inspecting biomarkers. If the sick person undergoes the initial signs of occult peritoneal metastasis in GC, early detection is conducted. Yet, the physical …prognosis of this cancer cannot diagnose it, and so, automated detection of the images by dissecting the preoperational Computed Tomography (CT) images by conditional random fields accompanying Pro-DAE (Post-processing Denoising Autoencoders) and the labeling in the images is rid by denoising strainers; later, the ensued images and the segmented images experience the Graph Convolutional Networks (GCN), and the outcome feature graph information experience the enhanced categorizer (Greywold and Cuckoo Search Naïve Bayes categorizer) procedure that is employed for initial diagnosis of cancer. Diagnosis of cancer at the initial phase certainly lessens the matured phases of cancer. Hence, this medical information is gathered and treated for diagnosing the sickness. Show more
Keywords: Gastric Cancer, MIoT, Greywold and Cuckoo Search Naïve Bayes categorizer, Cuckoo-Grey Wolf search Correlative Naïve Bayes categorizer
DOI: 10.3233/JIFS-233510
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Sánchez-DelaCruz, Eddy | Abdul-Kareem, Sameem | Pozos-Parra, Pilar
Article Type: Research Article
Abstract: Background: Many neurodegenerative diseases affect human gait. Gait analysis is an example of a non-invasive manner to diagnose these diseases. Nevertheless, gait analysis is difficult to do because patients with different neurodegenerative diseases may have similar human gaits. Machine learning algorithms may improve the correct identification of these pathologies. However, the problem with many classification algorithms is a lack of transparency and interpretability for the final user. Methods: In this study, we implemented the PS -Merge operator for the classification, employing gait biomarkers of a public dataset. Results: The highest classification percentage was 83.77%, which means …an acceptable degree of reliability. Conclusions: Our results show that PS -Merge has the ability to explain how the algorithm chooses an option, i.e., the operator can be seen as a first step to obtaining an eXplainable Artificial Intelligence (XAI). Show more
Keywords: PS-Merge, Classification, Neurodegenerative diseases, XAI
DOI: 10.3233/JIFS-235053
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Ren, Jianji | Yang, Donghao | Yuan, Yongliang | Liu, Haiqing | Hao, Bin | Zhang, Longlie
Article Type: Research Article
Abstract: The utilization of green edge has emerged as a promising paradigm for the development of new energy vehicle (NEV). Nevertheless, the recharging of these vehicles poses a significant challenge in due to limited power resources and enormous transmission demands. A novel architecture based on Wifi-6 communication is proposed, which makes the most of heterogeneous edge nodes to achieve real-time processing and computation of tasks. To address the collaborative power resource optimization problem, the interference between different vehicles is considered, and the task offloading is optimized. In particular, the power contention among recharging clusters is modeled as an exact game and …a task offloading strategy model is proposed jointly with the Deep Q-Network (DQN) algorithm, which is employed by a secondary application. Thereby, the recharging efficiency and task offloading computation are optimized and improved. Results indicate that the total resource consumption is favorably improved with this architecture and algorithm and the Nash equilibrium is also demonstrated. Show more
Keywords: Energy management, vehicle recharging, heterogeneous node gaming, computation offloading, recharging efficiency
DOI: 10.3233/JIFS-233990
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Priya, S. Baghavathi | Rani, P. Sheela | Chokkalingam, S.P. | Prathik, A. | Mohan, M. | Anitha, G. | Thangavel, M. | Suthir, S.
Article Type: Research Article
Abstract: Traditional testimony and electronic endorsements are extremely challenging to uphold and defend, and there is a problem with challenging authentication. The identity of the student is typically not recognized when it comes to requirements for access to a student’s academic credentials that are scattered over numerous sites. This is an issue with cross-domain authentication methods. On the one hand, whenever the volume of cross-domain authentication requests increases dramatically, the response time can become intolerable because of the slow throughput associated with blockchain mechanisms. These systems still do not give enough thought to the cross-domain scenario’s anonymity problem. This research proposes …an effective cross-domain authentication mechanism called XAutn that protects anonymity and integrates seamlessly through the present Certificate Transparency (CT) schemes. XAutn protects privacy and develops a fast response correctness evaluation method that is based on the RSA (Rivest, Shamir, and Adleman) cryptographic accumulator, Zero Knowledge Proof Algorithm, and Proof of Continuous work consensus Algorithm (POCW). We also provide a privacy-aware computation authentication approach to strengthen the integrity of the authentication messages more securely and counteract the discriminatory analysis of malevolent requests. This research is primarily used to validate identities in a blockchain network, which makes it possible to guarantee their authenticity and integrity while also increasing security and privacy. The proposed technique greatly outperformed the current methods in terms of authentication time, period required for storage, space for storage, and overall processing cost. The proposed method exhibits a speed gain of authentication of roughly 9% when compared to traditional blockchain systems. The security investigation and results from experiments demonstrate how the proposed approach is more reliable and trustworthy. Show more
Keywords: Zero Knowledge Proof, RSA accumulator, educational certificates, cross-domain authentication, blockchain
DOI: 10.3233/JIFS-235140
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]