Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Zavala-Díaz, Jonathan | Olivares-Rojas, Juan C. | Gutiérrez-Gnecchi, José A. | Téllez-Anguiano, Adriana C. | Alcaraz-Chávez, J. Eduardo | Reyes-Archundia, Enrique
Article Type: Research Article
Abstract: Efficient medical information management is essential in today’s healthcare, significantly to automate diagnoses of chronic diseases. This study focuses on the automated identification of diabetic patients through a clinical note classification system. This innovative approach combines rules, information extraction, and machine learning algorithms to promise greater accuracy and adaptability. Initially, the four algorithms evaluated showed similar performance, with Gradient Boosting standing out with an accuracy of 0.999. They were tested on our clinical and oncology notes, where SVM excelled in correctly labeling non-oncology notes with a 0.99. Gradient Boosting had the best average with 0.966. The combination of rules, information …extraction, and Random Forest provided the best average performance, significantly improving the classification of clinical notes and reducing the margin of error in identifying diabetic patients. The principal contribution of this research lies in the pioneering integration of rule-based methods, information extraction techniques, and machine learning algorithms for enhanced accuracy in diabetic patient identification. For future work, we consider implementing these algorithms in natural clinical settings to evaluate their practical performance. Additionally, additional approaches will be explored to improve the accuracy and applicability of clinical note-grading systems in healthcare. Show more
Keywords: NLP, diabetes, machine learning, binary classification, word frequency analysis
DOI: 10.3233/JIFS-219375
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Martinez, German | Duta, Eduard-Andrei | Sanchez-Romero, Jose-Luis | Jimeno-Morenilla, Antonio | Mora-Mora, Higinio
Article Type: Research Article
Abstract: Within various industrial settings, such as shipping, aeronautics, woodworking, and footwear, there exists a significant challenge: optimizing the extraction of sections from material sheets, a process known as “nesting”, to minimize wasted surface area. This paper investigates efficient solutions to complex nesting problems, emphasizing rapid computation over ultimate precision. We introduce a dual-approach methodology that couples both a greedy technique and a genetic algorithm. The genetic algorithm is instrumental in determining the optimal sequence for placing sections, ensuring each is located in its current best position. A specialized representation system is devised for both the sections and the material sheet, …promoting streamlined computation and tangible results. By balancing speed and accuracy, this study offers robust solutions for real-world nesting challenges within a reduced computational timeframe. Show more
Keywords: Genetic algorithm, 2D nesting, irregular pattern, cutting, industrial automation
DOI: 10.3233/JIFS-219345
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Ling, Lina | Wen, Mi | Wang, Haizhou | Zhu, Zhou | Meng, Xiangjie
Article Type: Research Article
Abstract: The detection of out-of-distribution (OoD) samples in semantic segmentation is crucial for autonomous driving, as deep learning models are typically trained under the assumption of a closed environment, whereas the real world presents an open and diverse set of scenarios. Existing methods employ uncertainty estimation, image reconstruction, and other techniques for OoD sample detection. We have observed that different classes may exhibit connections and associations in varying contexts. For example, objects encountered by autonomous vehicles differ in rural road scenes compared to urban environments, and the likelihood of encountering novel objects varies. This aspect is missing in current anomaly detection …methods and is vital for OoD sample detection. Existing approaches solely consider the relative significance of each prediction class, overlooking the inter-object correlation. Although prediction scores (e.g., max logits) obtained from the segmentation network are applicable for OoD sample detection, the same problem persists, particularly for OoD objects. To address this issue, we propose the utilization of the Mahalanobis distance of max logits to evaluate the final predicted score. By calculating the Mahalanobis distance, the paper aims to uncover correlations between different classes, thus enhancing the effectiveness of OoD detection. To this end, we also extend the state-of-the-art segmentation model, DeepLabV3+, to enable OoD sample detection in this paper. Specifically, this paper proposes a novel backbone network, SOD-ResNet101, for extracting contextual and multi-scale semantic information, leveraging the class correlation feature of the Mahalanobis distance to enhance the detection performance of out-of-distribution objects. Notably, our approach eliminates the need for external datasets or separate network training, making it highly applicable to existing pretraining segmentation models. Show more
Keywords: Semantic segmentation, deep learning, anomaly segmentation, automatic driving, out-of-distribution detection
DOI: 10.3233/JIFS-237799
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Kumar Sahu, Vinay | Pandey, Dhirendra | Singh, Priyanka | Haque Ansari, Md Shamsul | Khan, Asif | Varish, Naushad | Khan, Mohd Waris
Article Type: Research Article
Abstract: The Internet of Things (IoT) strategy enables physical objects to easily produce, receive, and exchange data. IoT devices are getting more common in our daily lives, with diverse applications ranging from consumer sector to industrial and commercial systems. The rapid expansion and widespread use of IoT devices highlight the critical significance of solid and effective cybersecurity standards across the device development life cycle. Therefore, if vulnerability is exploited directly affects the IoT device and the applications. In this paper we investigated and assessed the various real-world critical IoT attacks/vulnerabilities that have affected IoT deployed in the commercial, industrial and consumer …sectors since 2010. Subsequently, we evoke the vulnerabilities or type of attack, exploitation techniques, compromised security factors, intensity of vulnerability and impacts of the expounded real-world attacks/vulnerabilities. We first categorise how each attack affects information security parameters, and then we provide a taxonomy based on the security factors that are affected. Next, we perform a risk assessment of the security parameters that are encountered, using two well-known multi-criteria decision-making (MCDM) techniques namely Fuzzy-Analytic Hierarchy Process (F-AHP) and Fuzzy-Analytic Network Process (F-ANP) to determine the severity of severely impacted information security measures. Show more
Keywords: IoT attacks, fuzzy-ANP, fuzzy-AHP, MCDM, IoT vulnerabilities
DOI: 10.3233/JIFS-233759
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Bochkarev, Vladimir V. | Savinkov, Andrey V. | Shevlyakova, Anna V. | Solovyev, Valery D.
Article Type: Research Article
Abstract: This work considers implementation of a diachronic predictor of valence, arousal and dominance ratings of English words. The estimation of affective ratings is based on data on word co-occurrence statistics in the large diachronic Google Books Ngram corpus. Affective ratings from the NRC VAD dictionary are used as target values for training. When tested on synchronic data, the obtained Pearson‘s correlation coefficients between human affective ratings and their machine ratings are 0.843, 0.779 and 0.792 for valence, aroused and dominance, respectively. We also provide a detailed analysis of the accuracy of the predictor on diachronic data. The main result of …the work is creation of a diachronic affective dictionary of English words. Several examples are considered that illustrate jumps in the time series of affective ratings when a word gains a new meaning. This indicates that changes in affective ratings can serve as markers of lexical-semantic changes. Show more
Keywords: Affective words, affective norms, sentiment dictionary, word valence ratings, lexical semantic change
DOI: 10.3233/JIFS-219358
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Zhang, Yingmin | Yi, Afa | Li, Shuo
Article Type: Research Article
Abstract: The constant development and application of new technologies, such as big data, artificial intelligence and the mobile Internet, have profoundly changed the personal and professional spheres. Despite these advances, finance professionals are still faced with a multitude of routine, repetitive and error-prone tasks. At the same time, they are challenged by the shift to management accounting, resulting in reduced productivity. This paper addresses these issues by introducing a financial statement filing robot developed using Robotic Process Automation (RPA) technology. The application of this robot has been shown to provide superior efficiency and accuracy, reduce the heavy burden of routine tasks, …and facilitate a smooth transition to management accounting practices. In addition, this research provides a valuable reference for the application and diffusion of RPA technology in the financial sector. Given the large amount of text data generated by financial processes, this paper proposes an automatic text categorization model. The effectiveness of the model is demonstrated as a response to address the challenges encountered in the consultation and archiving process. This contribution informs the development of text categorization robots tailored to the needs of finance professionals. Show more
Keywords: RPA technology, robot, financial statements, text classification, naive Bayes classifier model
DOI: 10.3233/JIFS-236716
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Jun, Dai | Huijie, Shi | Yanqin, Li | Junwei, Zhao | Naohiko, Hanajima
Article Type: Research Article
Abstract: Cylinder liner is an internal part of the automobile engine, which plays an important role in the automobile internal combustion engine. Therefore, it is a top priority to accurately and quickly detect the cylinder liner surface defects. In order to effectively achieve the classification and localization of surface defects on the cylinder liner, this paper establishes a dataset for surface defects on cylinder liner and proposes a based on improved YOLOv5 algorithm for detecting surface defects on cylinder liner. Firstly, a machine vision system is established to acquire on-site images and perform manual annotation to build the dataset of surface …defects on cylinder liner. Secondly, the GSConv SlimNeck mechanism is introduced to reduce the model complexity; the Bi-directional Feature Pyramid Network (BiFPN) is used to fuse the feature information at different scales to enhance the detection accuracy of small surface defects on cylinder liner; and embedding the SimAM attention mechanism to focus on the object region of interest and improve the accuracy and robustness of the model. The final improved YOLOv5 model reduces the number of model parameters by 15.8% compared to the non-improved YOLOv5. And the experimental results on our self-built dataset for cylinder liner defects show that the mAP0.5 is improved by 0.4%. This means that the accuracy of model detection was not compromised. This method can be applied to actual production processes. Show more
Keywords: Cylinder liner defect detection, YOLOv5, GSConv SlimNeck, BiFPN, SimAM
DOI: 10.3233/JIFS-237793
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Chen, Xinying | Hu, Mingjie
Article Type: Research Article
Abstract: With the rapid proliferation of substantial textual data from sources such as social media, online comments, and news articles, sentiment analysis has become increasingly crucial. However, existing deep learning methods have overlooked the significance of part-of-speech (POS) and emotional words in understanding the emotion of text. Based on this, this paper proposes a sentiment analysis approach that combines multiple features with a dual-channel network. Firstly, the vector representation of the text is obtained through Robustly Optimized BERT Pretraining Approach (RoBERTa). Secondly, the POS features and word emotional features are separately updated using self-attention to calculate weights. Concatenating words, POS and …emotion, feature dimension reduction and fusion are achieved through a linear layer. Finally, the fused feature vector is input into a dual-channel network composed of Bidirectional Gated Recurrent Unit (BiGRU) and Deep Pyramid Convolutional Neural Network (DPCNN). Experimental results demonstrate that the proposed method achieves higher classification accuracy than the comparative methods on three sentiment analysis datasets. Moreover, the experimental results fully validate the effectiveness of the proposed approach. Show more
Keywords: Sentiment analysis, part-of-speech, RoBERTa, bidirectional gated recurrent unit, deep pyramid convolutional neural network
DOI: 10.3233/JIFS-237749
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Gowri, S. | Vennila, B. | Antony Crispin Sweety, C.
Article Type: Research Article
Abstract: The primary focus of this work is to develop the concept of bipolar N-neutrosophic supra topological spaces. Also, extended some concepts such as closure and interior operators of N-neutrosophic supra topological spaces to Bipolar N-neutrosophic supra topological spaces. The properties and relationship between weak forms of bipolar N-neutrosophic supra topological open sets are also established. Further, suggested several separations amongst bipolar N-neutrosophic supra sets. Some distance between bipolar N-neutrosophic sets is introduced and an efficient approachfor group multi-criteria decision making based on bipolar N-neutrosophic sets is proposed.
Keywords: Bipolar N-neutrosophic supra topology, bipolar N-neutrosophic supra α-open set, bipolar N-neutrosophic supra semi-open, bipolar N-neutrosophic supra β-open and bipolar N-neutrosophic supra pre-open, N-valued interval neutrosophic sets
DOI: 10.3233/JIFS-224450
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Vallejos, Sebastian | Armentano, Marcelo G. | Berdun, Luis | Schiaffino, Silvia | González Císaro, Sandra | Nigro, Oscar | Balduzzi, Leonardo | Cuesta, Ignacio
Article Type: Research Article
Abstract: Product classification is a critical task for the smooth running of the purchase process in e-commerce websites. When it comes to P2P marketplaces, users can act both as sellers and as buyers, and they need to assign predefined categories to the products they want to sell. Besides being tedious for users, this task can result in ambiguous or inaccurate assignments. This article presents a method for the automatic categorization of items offered in a local P2P marketplace using a multi-level classification approach. Our experiments demonstrated a significant improvement in the classification results of the proposed solution compared to a traditional …direct classification approach. Show more
Keywords: Classification, e-commerce, NLP, P2P marketplace
DOI: 10.3233/JIFS-219344
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]