Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Alsuwat, Emad
Article Type: Research Article
Abstract: Machine learning (ML) techniques play a crucial role in producing precise predictions without the use of explicit programming by utilizing representative and unbiased data. These methods, which are a subset of artificial intelligence (AI), are used in a variety of settings, including recommendation engines, spam filtering, malware detection, classification, and predictive maintenance. While ML algorithms improve results, they also present security and privacy threats, especially in the face of adversarial ML attacks such as data poisoning assaults that can undermine data modeling applications. This study introduces SecK2, a cutting-edge ML method developed to stop dangerous input from entering ML models. …The scalability of SecK2 is proved through meticulous experimental research, revealing its astonishing capacity to identify data poisoning attacks at a previously unheard-of pace. As a result, SecK2 becomes a valuable tool for guaranteeing the reliability and security of ML models. Our suggested method produces outstanding results by a variety of criteria. Notably, it achieves a noteworthy 61% convergence rate and an exceptional 89% attack detection rate. Additionally, it offers a phenomenal 96% throughput while protecting data integrity at 53%. The technique also boasts impressive Validation accuracy of 96% and Training accuracy of 92%. The suggested technology offers a strong and reliable barrier against the rising danger of data poisoning attacks. ML practitioners can have more faith in their models, thanks to SecK2’s capabilities, protecting against potential adversarial assaults and preserving the dependability of ML-based applications. Show more
Keywords: Data poisoning attacks, machine learning, privacy prediction, malicious data
DOI: 10.3233/JIFS-233942
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10619-10633, 2023
Authors: Nie, Kuang | Langari, Reza
Article Type: Research Article
Abstract: Surface electromyography (sEMG) signals have great potential for predicting upper limb motion. Although prior investigations have explored diverse applications of sEMG signal analysis, but few studies have focused on real-time motion prediction within the context of upper limb configuration space. Additionally, previous research has not adequately considered individual variability in sEMG features. This study aims to accomplish two main objectives. Firstly, it seeks to examine the dissimilarities in signal distribution across different subjects when employing various features. Additionally, the study aims to establish a correlation between signal distribution patterns and the model’s predictive accuracy. Secondly, the study introduced a personalized …standardization (PSD) technique, which will serve to normalize the shape of the signal distribution across different subjects, thereby addressing the inter-individual differences in sEMG features. A bi-directional long short-term memory (Bi-LSTM) network is employed to estimate the real-time moving intention of the upper limb after applying the PSD technique. The analysis of signal distribution involved nine combinations of features, encompassing six features, namely mean absolute value (MAV), wave length (WL), variance (VAR), root mean square (RMS), mean frequency (MNF) and median frequency (MDF). To assess predictive capabilities, several models were evaluated. Remarkably, the distribution analysis clearly demonstrated that the shape of the signal distribution notably influences the model’s performance. Accroding to results, the incorporation of the PSD technique resulted in a notable improvement in the accuracy of the Bi-LSTM model, which leds to an enhancement of up to 2.8 percentage points in predictive accuracy. Additionally, the Bi-LSTM model emerged as the highest-performing model among all the compared models during the analysis. These findings underscore the importance of considering individual variability in sEMG features when developing predictive models for upper limb motion and highlight the potential benefits of employing the PSD technique to enhance model performance. Show more
Keywords: Surface electromyography, Real-time motion prediction, Deep Learning, Signal pre-processing
DOI: 10.3233/JIFS-234018
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10635-10648, 2023
Authors: Gui, Zhen
Article Type: Research Article
Abstract: The task of multi-label text classification involves assigning a set of related labels to a given document. However, there are three main problems with this task. Firstly, the joint modeling of label-text and label-label relationships is inadequate. Secondly, the semantic mining of the label itself is insufficient. Lastly, the utilization of the internal structure information of the label is ignored. To address these issues, a new multi-label text classification method has been proposed. This method is based on joint attention and shared semantic space. The joint multi-head attention mechanism models the relationship between labels and documents as well as the …relationship between labels simultaneously. This helps to avoid error transmission and utilizes the interaction information between them. The decouple shared semantic space embedding method improves the method of using labels semantic information and reduces deviation in the phase of modeling correlation. The hierarchical hinting method based on prior knowledge relies on the prior knowledge in the pre-trained model to exploit the labels hierarchy information. Experimental results have shown that this proposed method is superior to existing multi-label text classification methods in public datasets. Show more
Keywords: Multi-label text classification, attention mechanism, label representation, semantic embedding, pre-trained model
DOI: 10.3233/JIFS-234151
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10649-10659, 2023
Authors: Deng, Yu | Zhang, Wenxia
Article Type: Research Article
Abstract: In recent years, due to the rapid development of internet technology, the integration process of digital technology and financial services has accelerated. Digital Financial inclusion has emerged as the times require, becoming an important force to promote private enterprises to get out of financing difficulties. The development level evaluation of digital inclusive finance is a classical multiple attribute group decision making (MAGDM) problems. Recently, Recently, the Exponential TODIM(ExpTODIM) and (grey relational analysis) GRA method has been used to cope with MAGDM issues. The intuitionistic fuzzy sets (IFSs) are used as a tool for characterizing uncertain information during the development level …evaluation of digital inclusive finance. In this paper, the intuitionistic fuzzy Exponential TODIM-GRA (IF-ExpTODIM-GRA) method is built to solve the MAGDM under IFSs. In the end, a numerical case study for development level evaluation of digital inclusive finance is supplied to validate the proposed method. The main contributions of this paper are outlined: (1) the ExpTODIM and GRA method has been extended to IFSs; (2) Information Entropy is used to derive weight under IFSs. (3) the IF-ExpTODIM-GRA method is founded to solve the MAGDM under IFSs; (4) a numerical case study for development level evaluation of digital inclusive finance and some comparative analysis are supplied to validate the proposed method. Show more
Keywords: Multiple attribute group decision making (MAGDM), intuitionistic fuzzy sets (IFSs), ExpTODIM, GRA, digital inclusive finance
DOI: 10.3233/JIFS-234827
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10661-10673, 2023
Authors: Chen, Ze | Lu, Ning | Hou, Botao | Liu, Xin | Zuo, Xiaojun
Article Type: Research Article
Abstract: In order to improve the effect and accuracy of risk source identification, this paper studied the network security risk source identification model of power CPS system based on fuzzy artificial neural network. The network security risk source index system of power CPS system was constructed, and the dimension of index data was reduced by principal component analysis. Fuzzy theory is used to process the index data after dimension reduction, and the comprehensive membership vector of each index is obtained. The dynamic clustering algorithm is used to determine the number of hidden layer units of radial basis function neural network, and …the network security risk source identification model is established. Finally, the quantitative value of risk source identification is output. The experimental results show that the model can effectively reduce the dimension of the network security risk source index data of the power CPS system. The optimal distance threshold of the hidden layer is 4.2, and the optimal number of units is 6. In the final identification results, four severe risk sources and five moderate risk sources were obtained, and the quantitative values of risk source identification of each index were 63, 70, 71, 77, 65, 89 and 96, respectively, indicating that the model can effectively identify network security risk sources of power CPS systems. With the increase of the proportion of communication nodes removed, when there are various types of security vulnerability information, the mean square error value of the model is always lower than the set threshold, indicating that the model has high recognition accuracy. Show more
Keywords: Fuzzy theory, artificial neural network, power CPS system, network security, risk sources, identification model
DOI: 10.3233/JIFS-224090
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10675-10691, 2023
Authors: Kamran, Muhammad | Ashraf, Shahzaib | Salamat, Nadeem | Naeem, Muhammad | Hameed, Muhammad Shazib
Article Type: Research Article
Abstract: One of the hottest areas for applying the solutions currently available is the internet of things-based smart housing society architecture and its uncertainty analysis. When intelligent parking, waste management, public transportation, public safety, and other automatic methods for housing society’s growth were implemented, it became even more crucial. An intelligent, smart system is necessary to manage these problems and provide smooth services. Additionally, it will be helpful in reducing issues with time waste and societal safety. However, the issue comes up when describing accurate, approximate, or questionable parking, transit, safety, and waste management areas. This paper discusses several mathematical solutions …for the smart housing society that use fuzzy rough sets, probabilistic hesitant fuzzy sets, and their extensions with neutrosophic sets. For further growth, a few studies on the graphic display of the evolution of the smart housing society are also considered. The rough set theory can be useful when dealing with imprecise, incomplete, or indeterminate data sets. The core contribution of this work is the construction of a novel generalized notion of a single-valued neutrosophic probabilistic hesitant fuzzy rough set (SV-NPHFRS), which is a hybrid structure of the single-valued neutrosophic set, the probabilistic hesitant fuzzy set, and the rough set. In contrast to the present literature, the underlying idea of SV-NPHFRS is that it is a powerful mathematical tool for managing uncertainty and imperfect information. This method is particularly beneficial when there are a number of competing criteria to consider. The aggregation technique plays an important role in decision-making concerns, especially when more competing criteria are present. In the study’s comparison phase, the suggested decision support system is compared to relevant existing approaches. The results suggest that, in terms of choice flexibility, the suggested technique has the potential to outperform the drawbacks of the current decision-making tools. The proposed study is expected to be useful for a number of researchers conducting future work on housing societies, waste management, public safety diagnostics, and hybridization. Show more
Keywords: Single-valued neutrosophic probabilistic hesitant fuzzy rough sets, aggregation operators, decision making
DOI: 10.3233/JIFS-224364
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10693-10737, 2023
Authors: Suo, Chunfeng | Li, Yongming | Guo, Li
Article Type: Research Article
Abstract: The polygonal interval-valued fuzzy number is constructed based on the polygonal fuzzy number and the interval-valued fuzzy number. Its main feature is that the linear operation of finite ordered points reduces the complexity of traditional interval-valued fuzzy number operations. This research presents a generalized distance formula between two polygonal interval-valued fuzzy numbers and explores topological properties under the distance of polygonal interval-valued fuzzy numbers. In addition, we adopt the TOPSIS (technique for order preference by similarity to an ideal solution) and prospect theory approach for the multi-attribute decision-making problem. The information of attributes describes with polygonal interval-valued fuzzy numbers, and …we then implement optimized ranking on the alternatives according to the profit and loss ratio. Finally, we verify the effectiveness and practicability of the decision-making method and fuzzy numbers at polygonal interval-valued fuzzy numbers in e-commerce risk assessment. Show more
Keywords: Polygonal interval-valued fuzzy number, human resource recruitment, generalized distance, arithmetic operation
DOI: 10.3233/JIFS-230040
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10739-10755, 2023
Authors: Cao, Xianghong | Wu, Kunning | Geng, Xin | Wang, Yongdong
Article Type: Research Article
Abstract: With the acceleration of urbanization, the frequency of building fire incidents has been increasing year by year. Therefore, rapid, efficient, and safe evacuation from buildings has become an urgent and important task. A construction fire escape path planning method based on an improved NavMesh algorithm is proposed in this paper. Firstly, by using the method of local updates in the navigation grid, redundant computation is reduced, and the update time of the improved algorithm is about 6.8% of that of the original algorithm, immediate generation of navigation is achieved. Secondly, the heuristic function of the pathfinding algorithm is improved, and …a multi-exit path planning mechanism is proposed to achieve more efficient, which can quickly plan a safe evacuation path away from the spreading fire and smoke in the event of a fire. Finally, a new evaluation index called Navigation Grid Complexity (NGC) is proposed and demonstrated to measure the quality of navigation grids. The feasibility and effectiveness of the proposed method are validated through simulation experiments on actual building models, which can provide real-time, efficient, intelligent, and safe path planning for rapid evacuation of evacuees in the fire scene. Show more
Keywords: NavMesh, path planning, fire emergency evacuation, dynamic environments
DOI: 10.3233/JIFS-232681
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10757-10768, 2023
Authors: Ran, Lang | Hong, Chaoqun | Zhang, Xuebai | Tang, Chaohui | Xie, Yuhong
Article Type: Research Article
Abstract: Human pose estimation is a challenging visual task that relies on spatial location information. To improve the performance of human pose estimation, it is important to accurately determine the constraint relationship among keypoints. To address this, we propose MfvPose, a novel hybrid model that leverages rich multi-scale information. The proposed model incorporates the HRFOV module, which uses cascaded atrous convolution to maintain high-resolution representations of the backbone extractor and enrich the multi-scale information. In addition, we introduce learnable scalar weights to the Transformer encoder. In detail, it involves a multiplication by a diagonal matrix with learnable scalar weights on output …of each residual block, which improves the dynamics of model training and enhances the accuracy of human pose estimation. It is experimentally shown that our proposed MfvPose achieves promising results on various benchmarks. Show more
Keywords: Receptive field, multi-head self-attention, atrous convolution, human pose estimation
DOI: 10.3233/JIFS-233375
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10769-10778, 2023
Authors: Baskar, A. | Rajaram, A.
Article Type: Research Article
Abstract: Mobile Adhoc Network (MANET) is a dynamic network with mobility nodes. Emerging applications for MANETs in real-time present numerous research challenges. Specifically, the mobile nodes’ dynamic character hinders the routing efficacy in MANET. Previous algorithms for routing like DSDV DSR, AODV, and are inefficient due to an ineffective route discovery method. Route selection becomes more complex and energy-intensive for large-scale applications, such as air pollution monitoring. For air pollution monitoring applications, this research seeks to improve data delivery while reducing energy consumption. In this work, we proposed DeepOptimizer for achieving optimal data transmission. First, the network is segregated into multiple …clusters using the Rough set theory. In the all clusters, Cluster Head is accountable for split a data into normal and emergency. This process is performed by grouping data by K++ means algorithm. For emergency data, Graph-based Route Selection (GRS) algorithm. This is the fast algorithm that selects the optimal route. On the other hand, the normal data transmission route is selected by the Deep-SpikeQNetwok-based Whale Optimization (WO) algorithm. Finally, the network is tested through simulations made in ns-3 based on network lifetime, throughput, energy level, delay and packet delivery ratio. Show more
Keywords: Deep routing, emergency data transmission, spiking networks, MANET
DOI: 10.3233/JIFS-233425
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10779-10797, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]