Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Dong, Yu | Zhang, Xianquan | Yu, Chunqiang | Tang, Zhenjun | Xia, Guoen
Article Type: Research Article
Abstract: Digital images are easily corrupted by attacks during transmission and most data hiding methods have limitations in resisting cropping and noise attacks. Aiming at this problem, we propose a robust image data hiding method based on multiple backups and pixel bit weight (PBW). Especially multiple backups of every pixel bit are pre-embedded into a cover image according to a reference matrix. Since different pixel bits have different weights, the most significant bits (MSBs) occupy more weights on the secret image than those of the least significant bits (LSBs). Accordingly, some backups of LSBs are substituted by the MSBs to increase …the backups of MSBs so that the quality of the extracted secret image can be improved. Experimental results show that the proposed algorithm is robust to cropping and noise attacks for secret image. Show more
Keywords: Data hiding, anti-cropping, anti-noise, multi-backup data, pixel bit weight, reference matrix
DOI: 10.3233/JIFS-210862
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6935-6948, 2021
Authors: Panityakul, Thammarat | Mahmood, Tahir | Ali, Zeeshan | Aslam, Muhammad
Article Type: Research Article
Abstract: Certain intellectuals have generalized the principle of the fuzzy set (FS), but the theory of complex q-rung orthopair fuzzy set (Cq-ROFS) has received massive attraction from different scholars. The goal of this study is to combine the principle of Heronian mean (HM) operator with Cq-ROFS is to initiate the complex q-rung orthopair fuzzy HM (Cq-ROFHM) operator, complex q-rung orthopair fuzzy weighted HM (Cq-ROFWHM) operator, complex q-rung orthopair fuzzy geometric HM (Cq-ROFGHM) operator, complex q-rung orthopair fuzzy weighted geometric HM (Cq-ROFWGHM) operator, and their flexible and dominant properties. These operators can help to aggregate any number of attributes to determine the …reliability and consistency of the investigated operators. Moreover, there are physical and non-physical threats. Physical threats cause damage to computer systems hardware and infrastructure. Examples include theft, vandalism through to natural disasters. Non-physical threats target the software and data on the computer systems. To manage such sort of troubles, we determine the analyzing and controlling computer security threats based on presented operators under the Cq-ROFS. Finally, to show the reliability and proficiency of the presented approaches, we resolved some numerical examples by using the explored operators. The comparative analysis, advantages, and graphical interpretations of the presented works are also discovered. Show more
Keywords: Complex q-rung orthopair fuzzy sets, heronian mean operators, analyzing and controlling computer security threats
DOI: 10.3233/JIFS-210870
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6949-6981, 2021
Authors: Rubin Bose, S. | Sathiesh Kumar, V.
Article Type: Research Article
Abstract: The real-time perception of hand gestures in a deprived environment is a demanding machine vision task. The hand recognition operations are more strenuous with different illumination conditions and varying backgrounds. Robust recognition and classification are the vital steps to support effective human-machine interaction (HMI), virtual reality, etc. In this paper, the real-time hand action recognition is performed by using an optimized Deep Residual Network model. It incorporates a RetinaNet model for hand detection and a Depthwise Separable Convolutional (DSC) layer for precise hand gesture recognition. The proposed model overcomes the class imbalance problems encountered by the conventional single-stage hand action …recognition algorithms. The integrated DSC layer reduces the computational parameters and enhances the recognition speed. The model utilizes a ResNet-101 CNN architecture as a Feature extractor. The model is trained and evaluated on the MITI-HD dataset and compared with the benchmark datasets (NUSHP-II, Senz-3D). The network achieved a higher Precision and Recall value for an IoU value of 0.5. It is realized that the RetinaNet-DSC model using ResNet-101 backbone network obtained higher Precision (99.21 %for AP0.5 , 96.80%for AP0.75 ) for MITI-HD Dataset. Higher performance metrics are obtained for a value of γ= 2 and α= 0.25. The SGD with a momentum optimizer outperformed the other optimizers (Adam, RMSprop) for the datasets considered in the studies. The prediction time of the optimized deep residual network is 82 ms. Show more
Keywords: Hand gesture recognition, RetinaNet, ResNet-101, CNN, human machine interaction
DOI: 10.3233/JIFS-210875
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6983-6997, 2021
Authors: Liao, Ningna | Gao, Hui | Wei, Guiwu | Chen, Xudong
Article Type: Research Article
Abstract: Facing with a sea of fuzzy information, decision makers always feel it difficult to select the optimal alternatives. Probabilistic hesitant fuzzy sets (PHFs) utilize the possible numbers and the possible membership degrees to describe the behavior of the decision makers. though this environment has been introduced to solve problems using different methods, this circumstance can still be explored by using different method. This paper’ s aim is to develop the MABAC (Multi-Attributive Border Approximation area Comparison) decision-making method which based on cumulative prospect theory (CPT) in probabilistic hesitant fuzzy environment to handle multiple attributes group decision making (MAGDM) problems. Then …the weighting vector of attributes can be calculated by the method of entropy. Then, in order to show the applicability of the proposed method, it is validated by a case study for buying a house. Finally, through comparing the outcome of comparative analysis, we conclude that this designed method is acceptable. Show more
Keywords: Multiple attribute group decision making (MAGDM), probability hesitant fuzzy sets (PHFs), cumulative prospect theory (CPT); MABAC method
DOI: 10.3233/JIFS-210889
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6999-7014, 2021
Authors: Miao, Guoyi | Chen, Yufeng | Liu, Jian | Xu, Jinan | Liu, Mingtong | Feng, Wenhe
Article Type: Research Article
Abstract: The hypotactic structural relation between clauses plays an important role in improving the discourse coherence of document-level translation. However, the standard neural machine translation (NMT) models do not explicitly model the hypotactic relationship between clauses, which usually leads to structurally incorrect translations of long and complex sentences. This problem is particularly noticeable on Chinese-to-English translation task of complex sentences due to the grammatical form distinction between English and Chinese. English is rich in grammatical form (e.g. verb morphological changes and subordinating conjunctions) while Chinese is poor in grammatical form. These linguistic phenomena make it a challenge for NMT to learn …the hypotactic structure knowledge from Chinese as well as the structure alignment between Chinese and English. To address these issues, we propose to model the hypotactic structure for Chinese-to-English complex sentence translation by introducing hypotactic structure knowledge. Specifically, we annotate and build a hypotactic structure aligned parallel corpus that provides rich hypotactic structure knowledge for NMT. Moreover, we further propose a structure-infused neural framework to combine the hypotactic structure knowledge with the NMT model through two integrating strategies. In particular, we introduce a specific structure-aware loss to encourage the NMT model to better learn the structure knowledge. Experimental results on WMT17, WMT18 and WMT19 Chinese-to-English translation tasks demonstrate the effectiveness of the proposed methods. Show more
Keywords: Neural machine translation, hypotactic structure, discourse coherence, structure-infused neural framework
DOI: 10.3233/JIFS-210908
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7015-7029, 2021
Authors: Xiao, Lu | Wei, Guiwu | Guo, Yanfeng | Chen, Xudong
Article Type: Research Article
Abstract: Interval-valued intuitionistic fuzzy set (IVIFS) is a flexible method to deal with uncertainty and fuzziness. For the past few years, extensive researches about the multi-attribute group decision making (MAGDM) problems based on IVIFSs has been extensively studied in many fields. In this study, the Taxonomy method based on IVIFSs (IVIF-Taxonomy) was proposed for MAGDM problems. For the sake of the objectivity of attribute weight, entropy is introduced into the proposed model. The IVIF-Taxonomy method fully considers the weight of the decision makers (DMs) and the homogeneity of the chosen alternatives, making it more realistic. In addition, we apply IVIF-Taxonomy method …to fund selection to verify the validity of IVIF-Taxonomy method. Finally, the trustworthy of IVIF-Taxonomy method is proved by comparing with the aggregate operator, IVIF-TOPSIS method, IVIF-GRA method and modified IVIF-WASPAS method. Show more
Keywords: Multiple attribute group decision making (MAGDM), Interval-valued intuitionistic fuzzy sets, taxonomy method, entropy
DOI: 10.3233/JIFS-210918
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7031-7045, 2021
Authors: Hamad, Aws Hamed | Mahmood, Ali Abdulkareem | Abed, Saad Adnan | Ying, Xu
Article Type: Research Article
Abstract: Word sense disambiguation (WSD) refers to determining the right meaning of a vague word using its context. The WSD intermediately consolidates the performance of final tasks to achieve high accuracy. Mainly, a WSD solution improves the accuracy of text summarisation, information retrieval, and machine translation. This study addresses the WSD by assigning a set of senses to a given text, where the maximum semantic relatedness is obtained. This is achieved by proposing a swarm intelligence method, called firefly algorithm (FA) to find the best possible set of senses. Because of the FA is based on a population of solutions, it …explores the problem space more than exploiting it. Hence, we hybridise the FA with a one-point search algorithm to improve its exploitation capacity. Practically, this hybridisation aims to maximise the semantic relatedness of an eligible set of senses. In this study, the semantic relatedness is measured by proposing a glosses-overlapping method enriched by the notion of information content. To evaluate the proposed method, we have conducted intensive experiments with comparisons to the related works based on benchmark datasets. The obtained results showed that our method is comparable if not superior to the related works. Thus, the proposed method can be considered as an efficient solver for the WSD task. Show more
Keywords: Firefly algorithm, local search, meta-heuristic, semantic relatedness, word sense disambiguation
DOI: 10.3233/JIFS-210934
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7047-7061, 2021
Authors: Gurmani, Shahid Hussain | Chen, Huayou | Bai, Yuhang
Article Type: Research Article
Abstract: As a generalization of linguistic q-rung orthopair fuzzy set (Lq-ROFS), linguistic interval valued q-Rung orthopair fuzzy set (LIVq-ROFS) is a new concept to deal with complex and uncertain decision making problems which Lq-ROFS cannot handle. Due to the lack of information in decision making process, decision makers mostly prefer to give their preferences in interval form rather than a crisp number. In this situations, LIVq-ROFS appears up as a useful tool. In this work, we define operational laws of LIVq-ROFS and prove some properties. Furthermore, we propose the conception of the LIVq-ROF weighted averaging operator and give its formula by …mathematical induction. To compare two or more linguistic interval valued q-Rung orthopair fuzzy numbers (LIVq-ROFNs), the improved form of score function is also given. Considering the powerfulness of LIVq-ROFSs handling ambiguity and complex uncertainty in practical problems, the key innovation of this paper is to develop the linguistic interval-valued q-rung orthopair fuzzy VIKOR model that is significantly different from the existing VIKOR methodology. The computing steps of this newly created model are briefly presented. Finally, the effectiveness of model is verified by an example and through comparative analysis, the superiority of VIKOR method is further illustrated. Show more
Keywords: Linguistic interval-valued q-rung orthopair fuzzy sets, multiple attribute group decision making, aggregation operators, VIKOR model, linguistic variable
DOI: 10.3233/JIFS-210940
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7063-7079, 2021
Authors: Yang, Guotian | Wang, Xiaowei | Wang, Yingnan
Article Type: Research Article
Abstract: This paper develops a fuzzy modeling strategy to study the temperature of different combustion layers in a power plant. First, a new infrared temperature measurement system is developed to measure three layers (bottom, middle and upper) temperature on both sides of the boiler. Then, a fuzzy clustering modeling algorithm is designed based on entropy to determine the structure of the fuzzy model and the corresponding fuzzy memberships of local models. The effect of modeling mismatches are overcome by the use of online identification of parameters. Simulation results show that the effectiveness of the proposed method can be achieved for a …660 MW power plant. Show more
Keywords: Data-driven modeling, combustion layer temperature, multi-model, fuzzy subtractive clustering
DOI: 10.3233/JIFS-210965
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7081-7091, 2021
Authors: Yu, Shujuan | Liu, Danlei | Zhang, Yun | Zhao, Shengmei | Wang, Weigang
Article Type: Research Article
Abstract: As an important branch of Nature Language Processing (NLP), how to extract useful text information and effective long-range associations has always been a bottleneck for text classification. With the great effort of deep learning researchers, deep Convolutional Neural Networks (CNNs) have made remarkable achievements in Computer Vision but still controversial in NLP tasks. In this paper, we propose a novel deep CNN named Deep Pyramid Temporal Convolutional Network (DPTCN) for short text classification, which is mainly consisting of concatenated embedding layer, causal convolution, 1/2 max pooling down-sampling and residual blocks. It is worth mentioning that our work was highly inspired …by two well-designed models: one is temporal convolutional network for sequential modeling; another is deep pyramid CNN for text categorization; as their applicability and pertinence remind us how to build a model in a special domain. In the experiments, we evaluate the proposed model on 7 datasets with 6 models and analyze the impact of three different embedding methods. The results prove that our work is a good attempt to apply word-level deep convolutional network in short text classification. Show more
Keywords: Deep convolution network, causal convolution, shortcut connection, short text classification
DOI: 10.3233/JIFS-210970
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7093-7100, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]