Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 595.00Impact Factor 2022: 4.160
The Journal of Alzheimer’s Disease is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer’s disease.
The journal publishes research reports, reviews, short communications, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer’s disease.
Authors: Krishna, Geethu | Santhoshkumar, Rashmi | Sivakumar, Palanimuthu Thangaraju | Alladi, Suvarna | Mahadevan, Anita | Dahale, Ajit B. | Arshad, Faheem | Subramanian, Sarada
Article Type: Research Article
Abstract: Background: Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are pathologically distinct neurodegenerative disorders with certain overlap in cognitive and behavioral symptoms. Both AD and FTD are characterized by synaptic loss and accumulation of misfolded proteins, albeit, in different regions of the brain. Objective: To investigate the synaptic and organellar markers in AD and FTD through assessment of the levels of synaptic protein, neurogranin (Ng) and organellar proteins, mitofusin-2 (MFN-2), lysosomal associated membrane protein-2 (LAMP-2), and golgin A4 from neuronal exosomes. Methods: Exosomes isolated from the plasma of healthy controls (HC), AD and FTD subjects were characterized …using transmission electron microscopy. Neurodegenerative status was assessed by measurement of neurofilament light chain (NfL) using Simoa. The pooled exosomal extracts from each group were analyzed for Ng, MFN-2, LAMP-2, and golgin A4 by western blot analysis using enhanced chemiluminescence method of detection. Results: The densitometric analysis of immunoreactive bands demonstrated a 65% reduction of Ng in AD and 53% in FTD. Mitochondrial protein MFN-2 showed a significant reduction by 32% in AD and 46% in FTD. Lysosomal LAMP-2 and Golgi complex associated golgin A4 were considerably increased in both AD and FTD. Conclusion: Changes in Ng may reflect the ongoing synaptic degeneration that are linked to cognitive disturbances in AD and FTD. Importantly, the rate of synaptic degeneration was more pronounced in AD. Changes to a similar extent in both the dementia groups in organellar proteins indicates shared mechanisms of protein accumulation/degradation common to both AD and FTD. Show more
Keywords: Alzheimer’s disease, exosomes, frontotemporal dementia, golgin A4, immunoblotting, LAMP-2, MFN-2, neurogranin
DOI: 10.3233/JAD-220829
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Huang, Li | Lu, Zhaogang | Zhang, Hexin | Wen, Hongyong | Li, Zongji | Liu, Qibing | Wang, Rui
Article Type: Review Article
Abstract: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Keywords: Alzheimer’s disease, amyloid-β, colitis, insulin resistance, intestinal flora, neuroinflammation
DOI: 10.3233/JAD-220651
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-13, 2022
Authors: Zhu, Min | Tang, Minglu | Du, Yifeng
Article Type: Research Article
Abstract: Background: Alzheimer’s disease (AD) brings heavy burden to society and family. There is an urgent need to find effective methods for disease diagnosis and treatment. The robust rank aggregation (RRA) approach that could aggregate the resulting gene lists has been widely utilized in genomic data analysis. Objective: To identify hub genes using RRA approach in AD. Methods: Seven microarray datasets in frontal cortex from GEO database were used to identify differential expressed genes (DEGs) in AD patients using RRA approach. STRING was performed to explore the protein-to-protein interaction (PPI). Gene Ontology enrichment and Kyoto Encyclopedia of …Genes and Genomes pathway analyses were utilized for enrichment analysis. Human Gene Connectome and Gene Set Enrichment Analysis were used for functional annotation. Finally, the expression levels of hub genes were validated in the cortex of 5xFAD mice by quantitative real-time polymerase chain reaction. Results: After RRA analysis, 473 DEGs (216 upregulated and 257 downregulated) were identified in AD samples. PPI showed that DEGs had a total of 416 nodes and 2750 edges. These genes were divided into 17 clusters, each of which contains at least three genes. After functional annotation and enrichment analysis, TAC1 is identified as the hub gene and may be related to synaptic function and inflammation. In addition, Tac1 was found downregulated in cortices of 5xFAD mice. Conclusion: In the current study, TAC1 is identified as a key gene in the frontal cortex of AD, providing insight into the possible pathogenesis and potential therapeutic targets for this disease. Show more
Keywords: Alzheimer’s disease, bioinformatics, synaptic function, tachykinins
DOI: 10.3233/JAD-220950
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Moebius, Hans J. | Church, Kevin J.
Article Type: Review Article
Abstract: An estimated 6.5 million Americans aged 65 years or older have Alzheimer’s disease (AD), which will grow to 13.8 million Americans by 2060. Despite the growing burden of dementia, no fundamental change in drug development for AD has been seen in > 20 years. Currently approved drugs for AD produce only modest symptomatic improvements in cognition with small effect sizes. A growing mismatch exists between the urgent need to develop effective drugs for symptomatic AD and the largely failed search for disease modification. The failure rate of clinical trials in AD is high overall, and in particular for disease-modifying therapies. Research …efforts in AD have focused predominantly on amyloid-β and tau pathologies, but limiting clinical research to these “classical hallmarks” of the disease does not address the most urgent patient, caregiver, or societal needs. Rather, clinical research should consider the complex pathophysiology of AD. Innovative approaches are needed that provide outside-the-box thinking, and re-imagine trial design, interventions, and outcomes as well as progress in proteomics and fluid biomarker analytics for both diagnostics and disease monitoring. A new approach offering a highly specific, yet multi-pronged intervention that exerts positive modulation on the HGF/MET neurotrophic system is currently being tested in mid-to-late-stage clinical trials in mild to moderate AD. Findings from such trials may provide data to support novel approaches for development of innovative drugs for treating AD at various disease stages and may offer benefits for those already symptomatic and disease alteration in AD and other neurodegenerative diseases. Show more
Keywords: Alzheimer’s disease, hepatocyte growth factor, HGF/MET, neurodegeneration, neurotrophic, pathogenesis, synaptogenesis
DOI: 10.3233/JAD-220871
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-12, 2022
Authors: Huang, Wenhao | Xia, Qing | Zheng, Feifei | Zhao, Xue | Ge, Fangliang | Xiao, Jiaying | Liu, Zijie | Shen, Yingying | Ye, Ke | Wang, Dayong | Li, Yanze
Article Type: Review Article
Abstract: The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer’s disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, …can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future. Show more
Keywords: Alzheimer’s disease, blood-brain barrier, microglia, neurovascular uncoupling, neurovascular unit, pericyte
DOI: 10.3233/JAD-221064
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-20, 2023
Authors: Guo, Xiaodi | Zhang, Guoxin | Peng, Qinyu | Huang, Liqin | Zhang, Zhaohui | Zhang, Zhentao
Article Type: Review Article
Abstract: Meningeal lymphatic vessels (mLVs), the functional lymphatic system present in the meninges, are the key drainage route responsible for the clearance of molecules, immune cells, and cellular debris from the cerebrospinal fluid and interstitial fluid into deep cervical lymph nodes. Aging and ApoE4, the two most important risk factors for Alzheimer’s disease (AD), induce mLV dysfunction, decrease cerebrospinal fluid influx and outflux, and exacerbate amyloid pathology and cognitive dysfunction. Dysfunction of mLVs results in the deposition of metabolic products, accelerates neuroinflammation, and promotes the release of pro-inflammatory cytokines in the brain. Thus, mLVs represent a novel therapeutic target for treating …neurodegenerative and neuroinflammatory diseases. This review aims to summarize the structure and function of mLVs and to discuss the potential effect of aging and ApoE4 on mLV dysfunction, as well as their roles in the pathogenesis of AD. Show more
Keywords: Alzheimer’s disease, amyloid-β, Apolipoprotein E4, meningeal lymphatic vessels, tau
DOI: 10.3233/JAD-221016
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-12, 2022
Authors: Daly, Timothy | Henry, Vincent | Bourdenx, Mathieu
Article Type: Review Article
Abstract: Background: Many putative causes and risk factors have been associated with outcomes in Alzheimer’s disease (AD) but all attempts at disease-modifying treatment have failed to be clinically significant. Efforts to address this “association—intervention” mismatch have tended to focus on the novel design of interventions. Objective: Here, we instead deal with the notion of association in depth. We introduce the concept of disease-associated process (DAP) as a flexible concept that can unite different areas of study of AD from genetics to epidemiology to identify disease-modifying targets. Methods: We sort DAPs using three properties: specificity for AD, frequency …in patients, and pathogenic intensity for dementia before using a literature review to apply these properties in three ways. Firstly, we describe and visualize known DAPs. Secondly, we exemplify qualitative specificity analysis with the DAPs of tau protein pathology and autophagy to reveal their differential implication in AD. Finally, we use DAP properties to define the terms “risk factor,” “cause,” and “biomarker.” Results: We show how DAPs fit into our collaborative disease ontology, the Alzheimer’s Disease-Associated Processes and Targets (ADAPT) ontology. We argue that our theoretical system can serve as a democratic research forum, offering a more biologically adequate view of dementia than reductionist models. Conclusion: The ADAPT ontology is a tool that could help to ground debates around priority setting using objective criteria for the identifying of targets in AD. Further efforts are needed to address issues of how biomedical research into AD is prioritized and funded. Show more
Keywords: Alzheimer’s disease, association, autophagy, biomarker, cause, disease ontology, intervention, risk factors, specificity, tau
DOI: 10.3233/JAD-221004
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-10, 2022
Authors: Ishabiyi, Felix Oluwasegun | Ogidi, James | Olukade, Baliqis Adejoke | Amorha, Chizoba Christabel | El-Sharkawy, Lina Y. | Okolo, Chukwuemeka Calistus | Adeniyi, Titilope Mary | Atasie, Nkechi Hope | Ibrahim, Abdulwasiu | Balogun, Toheeb Adewale
Article Type: Research Article
Abstract: Background: The development of therapeutic agents against Alzheimer’s disease (AD) has stalled recently. Drug candidates targeting amyloid-β (Aβ) deposition have often failed clinical trials at different stages, prompting the search for novel targets for AD therapy. The NLRP3 inflammasome is an integral part of innate immunity, contributing to neuroinflammation and AD pathophysiology. Thus, it has become a promising new target for AD therapy. Objective: The study sought to study the potential of bioactive compounds derived from Azadirachta indica to inhibit the NLRP3 protein implicated in the pathophysiology of AD. Methods: Structural bioinformatics via molecular docking …and density functional theory (DFT) analysis was utilized for the identification of novel NLRP3 inhibitors from A. indica bioactive compounds. The compounds were further subjected to pharmacokinetic and drug-likeness analysis. Results obtained from the compounds were compared against that of oridonin, a known NLRP3 inhibitor. Results: The studied compounds optimally saturated the binding site of the NLRP3 NACHT domain, forming principal interactions with the different amino acids at its binding site. The studied compounds also demonstrated better bioactivity and chemical reactivity as ascertained by DFT analysis and all the compounds except 7-desacetyl-7-benzoylazadiradione, which had two violations, conformed to Lipinski’s rule of five. Conclusion: In silico studies show that A. indica derived compounds have better inhibitory potential against NLRP3 and better pharmacokinetic profiles when compared with the reference ligand (oridonin). These compounds are thus proposed as novel NLRP3 inhibitors for the treatment of AD. Further wetlab studies are needed to confirm the potency of the studied compounds. Show more
Keywords: Alzheimer’s disease, Azadiracta indica, density functional theory, inflammasomes, molecular docking, NLRP3
DOI: 10.3233/JAD-221020
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Sagaro, Getu Gamo | Traini, Enea | Amenta, Francesco
Article Type: Systematic Review
Abstract: Background: Choline alphoscerate (alpha glyceryl phosphorylcholine, α-GPC) is a choline-containing phospholipid used as a medicine or nutraceutical to improve cognitive function impairment occurring in neurological conditions including adult-onset dementia disorders. Despite its 1985 marketing authorization, there are still discrepancies between countries regarding its approval as a prescription medicine and discussions about its effectiveness. Objective: This study aimed to evaluate the efficacy of the α-GPC compound for treating cognitive impairment in patients with adult-onset neurological disorders. Methods: Relevant studies were identified by searching PubMed, Web of Science, and Embase. Studies that evaluated the effects of α-GPC alone …or in combination with other compounds on adult-onset cognitive impairment reporting cognition, function, and behavior were considered. We assessed the risk of bias of selected studies using the Cochrane risk of bias tool. Results: A total of 1,326 studies and 300 full-text articles were screened. We included seven randomized controlled trials (RCTs) and one prospective cohort study that met our eligibility criteria. We found significant effects of α-GPC in combination with donepezil on cognition [4 RCTs, mean difference (MD):1.72, 95% confidence interval (CI): 0.20 to 3.25], functional outcomes [3 RCTs, MD:0.79, 95% CI: 0.34 to 1.23], and behavioral outcomes [4 RCTs; MD: –7.61, 95% CI: –10.31 to –4.91]. We also observed that patients who received α-GPC had significantly better cognition than those who received either placebo or other medications [MD: 3.50, 95% CI: 0.36 to 6.63]. Conclusion: α-GPC alone or in combination with donepezil improved cognition, behavior, and functional outcomes among patients with neurological conditions associated with cerebrovascular injury. Show more
Keywords: Alzheimer’s disease, choline alphoscerate, cognitive function, dementia, donepezil
DOI: 10.3233/JAD-221189
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Basha, SK Chand | Ramaiah, Mekala Janaki | Kosagisharaf, Jagannatha Rao
Article Type: Review Article
Abstract: Alzheimer’s disease (AD) is a complex neurodegenerative disorder involving heterogenous pathophysiological characteristics, which has become a challenge to therapeutics. The major pathophysiology of AD comprises amyloid-β (Aβ), tau, oxidative stress, and apoptosis. Recent studies indicate the significance of Triggering receptor expressed on myeloid cells 2 (TREM2) and its mutant variants in AD. TREM2 are the transmembrane receptors of microglial cells that performs a broad range of physiological cell processes. Phagocytosis of Aβ is one of the physiological roles of TREM, which plays a pivotal role in AD progression. R47H, a mutant variant of TREM2, increases the risk of AD by …impairing TREM2–Aβ binding. Inconclusive evidence regarding the TREM2 signaling cascade mechanism of Aβ phagocytosis motivates the current review to propose a new hypothesis. The review systematically assesses the cross talk between TREM2 and other AD pathological domains and the influence of TREM2 on amyloid and tau seeding. Disease associated microglia (DAM), a novel state of microglia with unique transcriptional and functional signatures reported in neurodegenerative conditions, also depend on the TREM2 pathway for its differentiation. DAM is suggested to have a neuroprotective role. We hypothesize that TREM2, along with its signaling adaptors and endogenous proteins, play a key role in ameliorating Aβ clearance. We indicate that TREM2 has the potential to ameliorate the Aβ burden, though with differential clearance ability and may act as a potential therapeutic target. Show more
Keywords: Alzheimer’s disease, amyloid-β, DAP10, DAP12, disease associated microglia, microglia, neurodegeneration, PLCγ2, DAM, R47H, TREM2
DOI: 10.3233/JAD-221070
Citation: Journal of Alzheimer's Disease, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]