Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 595.00Impact Factor 2024: 3.4
The Journal of Alzheimer’s Disease is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer’s disease.
The journal publishes research reports, reviews, short communications, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer’s disease.
Authors: Parham, Christi L. | Shaw, Courtney | Auckland, Lisa D. | Dickeson, S. Kent | Griswold-Prenner, Irene | Bix, Gregory
Article Type: Research Article
Abstract: Alzheimer’s disease (AD) is characterized by neuronal death, neurofibrillary tangles, and senile plaques. Amyloid-beta (Aβ) is the major component of plaques and consists of two prominent isoforms, Aβ40 and Aβ42 . As many risk factors for AD are vascular in origin and blood vessel defects in clearing Aβ from the brain are a potential key component of AD pathology, we have focused on the neuron-blood vessel interface, and in particular, the vascular basement membrane, which coats blood vessels and physically separates them from neurons. A prominent component of the vascular basement membrane is the extracellular matrix proteoglycan perlecan. Domain …V (DV) is the C-terminal domain and is generated by perlecan proteolysis. DV interacts with the α2 integrin and Aβ is a ligand for both α2β1 and αvβ1. Due to the known interaction of DV with α2β1 and α2β1’s requirement for Aβ deposition and neurotoxicity, we hypothesized that DV and/or its C-terminal domain, LG3, might alter neurotoxic signaling pathways by directly blocking or otherwise interfering with α2β1 binding by Aβ. Our study suggests that α2β1 mediates Aβ-induced activation of c-Jun and caspase-3, key components of the neurotoxic pathway, in primary cortical and hippocampal neurons. We further demonstrate that DV and/or LG3 may therapeutically modulate these α2β1 mediated neurotoxic effects suggesting that they or other α2β1 integrin modulators could represent a novel approach to treat AD. Finally, our results suggest different neurotoxicity susceptibilities between cortical and hippocampal neurons to Aβ40 and Aβ42 as further underscored by differing neuroprotective potencies of LG3 in each cell type. Show more
Keywords: Amyloid-β, cortical neurons, extracellular matrix, hippocampal neurons, integrins, signaling
DOI: 10.3233/JAD-160290
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1629-1647, 2016
Authors: Bonanni, Laura | Franciotti, Raffaella | Nobili, Flavio | Kramberger, Milica G. | Taylor, John-Paul | Garcia-Ptacek, Sara | Falasca, N. Walter | Famá, Francesco | Cromarty, Ruth | Onofrj, Marco | Aarsland, Dag | on behalf of the E-DLB study group
Article Type: Research Article
Abstract: Quantitative EEG (QEEG) has demonstrated good discriminative capacity for dementia with Lewy bodies (DLB) diagnosis as compared to Alzheimer’s disease (AD) with a predictive value of 100% in a single cohort study. EEG in DLB was characterized by a dominant frequency (DF) in pre-alpha (5.5–7.5 Hz), theta, or delta bands and DF variability (DFV) >1.2 Hz, frequency prevalence (FP) pre-alpha in >40% and FP alpha in <32% of the epochs. To validate the aforementioned QEEG findings in independent cohorts of clinically diagnosed DLB versus AD patients, we analyzed EEG traces of 79 DLB and 133 AD patients (MMSE >20) collected from four …European Centers. EEG traces from 19 scalp derivations were acquired as at least 10 min continuous signals and epoched in off-setting as series of 2-second-long epochs, subsequently processed by Fast Fourier Transform (frequency resolution 0.5 Hz). DLB patients showed EEG specific abnormalities in posterior derivations characterized by DF <8 Hz FP pre-alpha >50%, FP alpha <25%. DFV was >0.5 Hz. AD patients displayed stable alpha DF, DFV <0.5 Hz, FP pre-alpha <30%, and FP alpha >55%. DLB and AD differed for DF (p < 10–6 ), DFV (p < 0.05), FP pre-alpha (p < 10–12 ) and FP alpha (p < 10–12 ). Discriminant analysis detected specific cut-offs for every EEG mathematical descriptor; DF = 8, DFV = 2.2 Hz, FP pre-alpha=33%, FP alpha = 41% for posterior derivations. If at least one of the cut-off values was met, the percentage of DLB and AD patients correctly classified was 90% and 64%, respectively. The findings in this multicenter study support the validity of QEEG analysis as a tool for diagnosis in DLB patients. Show more
Keywords: Dementia with Lewy bodies, quantitative EEG
DOI: 10.3233/JAD-160435
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1649-1657, 2016
Authors: Gourmaud, Sarah | Mouton-Liger, François | Abadie, Claire | Meurs, Eliane F. | Paquet, Claire | Hugon, Jacques
Article Type: Research Article
Abstract: In Alzheimer’s disease (AD), the amyloid cascade hypothesis proposes that amyloid-beta (Aβ) neurotoxicity leads to neuroinflammation, synaptic loss, and neuronal degeneration. In AD patients, anti-amyloid immunotherapies did not succeed because they were possibly administered late in AD progression. Modulating new targets associated with Aβ toxicity, such as PKR (double-stranded RNA dependent kinase), and JNK (c-Jun N-terminal kinase) is a major goal for neuroprotection. These two pro-apoptotic kinases are activated in AD brains and involved in Aβ production, tau phosphorylation, neuroinflammation, and neuronal death. In HEK cells transfected with siRNA directed against PKR, and in PKR knockout (PKR–/– ) mice neurons, …we showed that PKR triggers JNK activation. Aβ-induced neuronal apoptosis, measured by cleaved PARP (Poly ADP-ribose polymerase) and cleaved caspase 3 levels, was reduced in PKR–/– neurons. Two selective JNK inhibitory peptides also produced a striking reduction of Aβ toxicity. Finally, the dual inhibition of PKR and JNK nearly abolished Aβ toxicity in primary cultured neurons. These results reveal that dual kinase inhibition can afford neuroprotection and this approach is worth being tested in in vivo AD and oxidative stress models. Show more
Keywords: Alzheimer’s disease, amyloid-beta, JNK, neuronal death, PKR, therapeutic strategy
DOI: 10.3233/JAD-160509
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1659-1670, 2016
Authors: Musunuri, Sravani | Khoonsari, Payam Emami | Mikus, Maria | Wetterhall, Magnus | Häggmark-Mänberg, Anna | Lannfelt, Lars | Erlandsson, Anna | Bergquist, Jonas | Ingelsson, Martin | Shevchenko, Ganna | Nilsson, Peter | Kultima, Kim
Article Type: Research Article
Abstract: Background: Alzheimer’s disease (AD) is a chronic neurodegenerative disorder accounting for more than 50% of all dementia cases. AD neuropathology is characterized by the formation of extracellular plaques and intracellular neurofibrillary tangles consisting of aggregated amyloid-β and tau, respectively. The disease mechanism has only been partially elucidated and is believed to also involve many other proteins. Objective: This study intended to perform a proteomic profiling of post mortem AD brains and compare it with control brains as well as brains from other neurological diseases to gain insight into the disease pathology. Methods: Here we …used label-free shotgun mass spectrometry to analyze temporal neocortex samples from AD, other neurological disorders, and non-demented controls, in order to identify additional proteins that are altered in AD. The mass spectrometry results were verified by antibody suspension bead arrays. Results: We found 50 proteins with altered levels between AD and control brains. The majority of these proteins were found at lower levels in AD. Pathway analyses revealed that several of the decreased proteins play a role in exocytic and endocytic pathways, whereas several of the increased proteins are related to extracellular vesicles. Using antibody-based analysis, we verified the mass spectrometry results for five representative proteins from this group of proteins (CD9, HSP72, PI42A, TALDO, and VAMP2) and GFAP, a marker for neuroinflammation. Conclusions: Several proteins involved in exo-endocytic pathways and extracellular vesicle functions display altered levels in the AD brain. We hypothesize that such changes may result in disturbed cellular clearance and a perturbed cell-to-cell communication that may contribute to neuronal dysfunction and cell death in AD. Show more
Keywords: Alzheimer’s disease, endocytosis, exocytosis, exosomes, extracellular vesicles, immobilized, chemistry antibodies, mass spectrometry
DOI: 10.3233/JAD-160271
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1671-1686, 2016
Article Type: Other
DOI: 10.3233/JAD-160799
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1687-1690, 2016
Article Type: Other
DOI: 10.3233/JAD-160963
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1691-1702, 2016
Article Type: Other
Citation: Journal of Alzheimer's Disease, vol. 54, no. 4, pp. 1703-1720, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]